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History and motivation

The study of asymptotic classes stems from a deep application by Chatzidakis, van den Dries and Macintyre
(CDM) of the Lang—Weil estimates [6] and the work of Ax [1]:

Theorem (CDM). [2] Let ¢(Z,y) be a formula in the language of rings L.ing, = {0,1,+,-}, where
[(Z) = n and [(j) = m. Then there exist a constant C € RV and a finite set D of pairs (d, ) €
{0,...,n} x Q7" such that for every finite field F, and for every a € F,”, if p(F,",a) # @, then

1o(Fy", a)| — pg| < Cg=" (%)

for some pair (d, u) € D.
Furthermore, the parameters are definable; that is, for each (d, (1) € D there exists an Ling-formula
©(a)(y) such that for every Fy, F, |= @4 ,)(a) iff a satisfies (x) for (d, ).

This theorem is a lot to take in at first. The idea is that the definable sets do not behave wildly and, even
better, that we can in fact assign a dimension d and a measure i to each of them in a finitary, uniform
way.

Macpherson and Steinhorn investigated other classes of finite structures that satisfy the CDM theorem.
[7] To this end they defined the notion of an asymptotic class as a generalisation of the CDM theorem.
The definition given below is actually that given by Elwes in [4], which is itself a slight generalisation of
the original definition in [7].

Definition. Let £ be a first-order language, N € N™ and C a class of finite L-structures. Then C is an

N-dimensional asymptotic class iff for every L-formula ¢(Z, ), where [(Z) = n and l(y) = m,

(a) there exist a finite set D C ({0,..., Nn} x R7") U {(0,0)} and a partition {® 4, : (d, 1) € D} of
the set {(M,a): M € C,a € M™} such that for each (d, ) € D

oM™, @) — ul M| = o (1M1]"")

for all (M, a) € ®(4,,) as | M| — oo; and
(b) for each (d, 1) € D there exists an L-formula ¢, ,y(y) such that for every M € C, M = p(q,)(a)
iff (M, a) € D).

Remark. We distinguish between an L-structure M and its underlying set M. The precise meaning of
the o-notation is as follows: for every ¢ > 0 there exists () € N such that for all (M,a) € @y, if
M| > @, then

p(M", )| — p| M| | < el M7,
Projection Lemma. [4, Lemma 2.2], [7, Theorem 2.1] If the above definition holds for all formulae
©(x,y) (with a single variable x), then it also holds for all formulae p(Z,y) (with a tuple of variables T ).

Theorem. [4, Corollary 2.8], [7, Lemma 4.1] Any infinite ultraproduct of an N-dimensional asymptotic
class is supersimple of D-rank at most N .

SEES

Some examples of 1-dimensional asymptotic classes include:

@ The class of finite fields. [2]

o Families of finite difference fields {(F u+n,0") : k € N}, where p is prime, m,n € N and ¢ is the
Frobenius automorphism. [Ryten, PhD thesis; see [4, §4]]

@ Various graph-theoretic examples. [7, Examples 3.3-3.6]

@ The class of extraspecial groups of exponent p for a given fixed odd prime p. [7, Proposition 3.11]
(A group of exponent p is extraspecial iff G' = Z(G) = ®(G) = Z/pZ, where ®(G) is the Frattini
subgroup of GG, which is defined to be the intersection of all maximal subgroups of GG or to be G if G
has no maximal subgroups.)

@ The class of finite cyclic groups. [7, Theorem 3.14]

@ The collection of finite envelopes of any smoothly approximable linear, affine or projective geometry.
[7, Theorem 3.8] (The notion of smooth approximation goes back to Lachlan and was developed in great
depth by Cherlin and Hrushovski in [3]. We omit the definition; see [5, §4] for a concise description.)

Elwes expanded on this last example to show that for any smoothly approximable structure M there
exists a subset of the set of finite envelopes of M that forms a rk(M)-dimensional asymptotic class.
[4, Proposition 4.1] Another example of an N-dimensional asymptotic class is any family of non-abelian
finite simple groups of a fixed Lie rank, where IV varies depending on the family. [Ryten, PhD thesis; see
[5, Theorem 6.1] ] These two examples were in fact the motivation for Elwes’ generalisation of the original
Macpherson—Steinhorn definition in [7], which covered only 1-dimensional asymptotic classes.

Further examples, results and exposition can be found in [4], [5], [7] and [8].

Recent developments in the applications of model theory to algebraic, analytic and diophantine geometry

Multidimensional asymptotic classes

An N-dimensional asymptotic class consists of structures of a fixed dimension N. However, there is
no a priori reason why CDM-like phenomena shouldn’t occur in classes where the dimensions of the
structures vary or where the structures themselves consist of different orthogonal /independent parts of
different dimensions. With this thought in mind, Macpherson and Steinhorn have developed a further
generalisation of an asymptotic class, a so-called multidimensional asymptotic class — or mac for short.
The precise details of the definition of a mac have yet to be finalised, and Anscombe and | have come up
with a variation of the Macpherson—Steinhorn definition that we feel captures CDM phenomena in broad
generality (but isn't so general as to be trivial). We first need to cover some preliminaries before we state
the definition:

Consider a class C of finite L-structures and define & .= {(M,a): M € C,a € M™}.

Definition. Let {®; : ¢ € I} be a partition of ®. The set ®; is definable iff there exists an L-formula
Y(y) such that for every M € C and for every a € M™, (M, a) € &, iff M = 1(a). The partition is
definable iff O, is definable for every ¢ € I. The partition is finite iff the indexing set [ is finite.

Definition. Let R be any set of functions from C to R=". The class C is an R-mac in L iff for any
L-formula ¢(Z,y), where [(Z) = n and [(y) = m, there exist functions hy,...,h; € R and a finite
definable partition @1, ..., P; of ¢ such that for each 7 € {1,...,[}

[o(M", @) — hi(M)| = o(hs(M))
for all (M, a) € ®; (with p(M",a) # &) as | M| — .

The idea behind this definition is to extend the scope of the dimension—measure functions. In the case of
an N-dimensional asymptotic class the functions are of the form w|M|/¥: the only independent variable
is the size of the whole structure. In an R-mac we have a lot more flexibility. Although the definition is
very general and allows R to be any set of functions from C to R=", the motivating examples (see below)
take R to be a set of functions defined in terms of the sizes of certain parts of the structures, such as
sorts or equivalence classes. (Note that the original conception of a mac was in terms of sorts.) We can
also vary the nature of the functions. In the old setting we have only multiplication by 1 and exponents %
for d € {0,..., Nn}, but now we can be quite free and consider, for example, arbitrary rational or even
irrational powers.

Some structural results about FR-macs have already been obtained. For example, we have shown that
the Projection Lemma also holds for R-macs, that no ultraproduct of an R-mac has the strict order
property, and that if the set of functions R is isomorphic to the semi-ring R="[X,... X, ] then any
infinite ultraproduct of an R-mac is supersimple. The intended interpretations of these X; are the sizes of
certain parts of the structures (c.f. the previous paragraph), but the result still goes through if we view the
semi-ring completely abstractly (modulo some technicalities). | am currently working on an adaptation to
R-macs of a result of Elwes regarding N-dimensional asymptotic classes which, put roughly, states that
bi-interpretability preserves being an asymptotic class. [4, §3]

Examples of R-macs

Some examples of R-macs are known:

@ Every N-dimensional asymptotic class is an R-mac.

@ In soon-to-be-submitted work, Dario Garcia, Macpherson and Steinhorn have shown that the class of
two-sorted structures consisting of a finite field F' (in the language of rings) and a vector space V/
over F' (in the language of additive groups with a map F' x V' — V) forms an R-mac, where the
functions in R are rational polynomials in the sizes of the sorts. (They use slightly different language
to state this, but it amounts to being a mac.) The ultraproduct of this class is supersimple. This class
remains an R-mac if each structure is equipped with a bilinear form. However, the ultraproduct of this
expanded class is no longer simple, although it is still NTP1.

@ In the same manuscript, Garcia, Macpherson and Steinhorn have shown that for any prime p, the class
of groups {(Z/p"Z)™ : m,n > 0} forms an R-mac. The details of functions in R are somewhat
intricate and we will not state them here, but note that the functions do not fit the original conception
of a mac and so this example lends credence to the generalisation to R-macs. Also note that this class
is in fact an exact multidimensional class: the functions in R give the precise sizes of the definable sets,
not just bounded approximations.

A non-example:

@ The class of rings {(Z/p"Z)™ : m,n > 0} is not an R-mac. This is because the formula
o(x,y) := Jz(2 -y = x) can pick out unboundedly many subsets of Z/p"Z of different sizes,
since |p(Z/p"Z,p")| = p" " for i € {0,...,n}, and thus no finite set of functions hy,...,h € R is
able to approximate the sizes of these definable sets for all n.
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Questions

@ We have found a sufficient condition on R for an infinite ultraproduct of an R-mac to be supersimple,
but can we find a necessary condition?

@ What conditions, if any, can we place on R to ensure that an infinite ultraproduct is NTP17?

@ We conjecture that the set of all finite envelopes of any smoothly approximable structure forms an
exact multidimensional class. Can we prove this?

@ Can we find new, interesting examples of R-macs, especially ones that make full use of the generality
of R? For instance, we hope to find graph-theoretic examples of bounded vertex-degree where the
functions in R are defined in terms of sizes of J-definable sets. This would provide examples of R-macs
not based on sorts, thereby adding further justification to the generalisation of the original conception
of a mac to the current notion of an R-mac.

Measurable structures

So far we have covered only classes of finite structures, but an important infinite counterpart to asymptotic
classes are so-called measurable structures. These are related to asymptotic classes in a fundamental way:
any infinite ultraproduct of an asymptotic class is a measurable structure. [5, Proposition 3.9] As well
as being interesting objects in their own right, measurable structures are invaluable for proving theorems
about asymptotic classes: many of the proofs of the previously mentioned results go via measurable
ultraproducts. Just as the older notion of an N-dimensional asymptotic class has been generalised to
that of an R-mac, the concept of a measurable structure has been generalised to that of a T-measurable
structure. We will cover only this more recent notion. Details of the original notion can be found in [5,

§3] and [8, §5].

Definition. Let T" be a semi-ring of characteristic zero and for an L-structure M let Def(M) denote
the set of all definable subsets of M" for all n > 0. An infinite L-structure M is T'-measurable iff there
exists a function H: Def(M) — T that satisfies the following conditions:

(a) For every L-formula ¢(Z,y), where [(Z) = n and [(y) = m, there exist f1,..., f; € T such that for
eacha € M™, H(p(M", a)) = f; for some i € {1,...,l}. Moreover, the set
{a e M™: H(p(M" a)) = f;} is -definable for each f;.

(b) H(X) = | X| for all finite X € Def(M) and H(X;U---UH,) = H(Xy)+---+ H(X,) for all
disjoint X1, ..., X, € Def(M).

(c) (Fubini) For all X, Y € Def(M), if p: X — Y is a definable surjection and H(p~*(y)) = f for all
y €Y, then H(X) = f - H(Y).

As with N-dimensional asymptotic classes and measurable structures, any infinite ultraproduct of an R-
mac is a T-measurable structure. Skipping over the details, the idea is that for a given L-formula (7, 7)
the functions hq, ..., h; € R give rise to the functions f,..., f; € T. By moving to an infinite structure
we can call upon the techniques and results of infinite model theory, bringing clear advantages.
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