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Chapter 0

Introduction

These are the lecture notes of the graduate course ‘Around Stable Groups’ given by Anand Pillay
between January and April 2013 in the School of Mathematics at the University of Leeds. The
typists are PhD students who attended the course: Daniel Wood (mmdaw@leeds.ac.uk) typed up
Chapter 1, Lovkush Agarwal (mmla@leeds.ac.uk) the majority of Chapter 2 and Ricardo Bello
Aguirre (mmriba@leeds.ac.uk) the end of Chapter 2 and all of Chapter 3. The notes were revised
slightly in October 2013; we plan to revise them further at some point in the future.

We will assume knowledge of elementary model theory, e.g. saturated models, homogeneity,
types, indiscernibles, T eq, Meq, Tarski–Vaught, etc. We shall forgo set-theoretic concerns and
assume the existence of saturated models of arbitrarily large cardinalities.

A lot of the material in these notes is based upon that in [5].1 Another useful text is [1], from
which the proof of Lemma 1.2 in these notes is adapted (see [1, Lemma 2.10]).

And finally, a note about the numbering: Numbered remarks from the lectures are numbered
as they were in the lectures, while (some) other remarks are shown as ‘Comments’ and are labelled
alphabetically.

1 Note that there is some slight discrepancy between the notion of forking presented in [5] and that presented
in some other texts, notably those of the French school.
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Chapter 1

Local stability and stability

We start by setting out some general notation and terminology, which will apply throughout
unless otherwise specified. L will be some first order-language, T will be a complete1 L-theory
with infinite models and M̄ will be some sufficiently large saturated model of T , i.e. a monster
model.2 You may take T or L to be countable if you so wish. By a model we will (usually) mean
a small elementary substructure M≺M̄ and, unless otherwise specified, M will denote a model
M≺ M̄. We write |= ϕ(a) for M̄ |= ϕ(a), although we may sometimes pass to an even bigger
model. We will usually use A to denote an arbitrary subset ofM or M̄. LA denotes the language
L with additional constant symbols for the elements of A; we will often conflate a ∈ A and its
corresponding constant symbol in LA. We use the letters x, y, z for n-tuples of free variables and
a, b, c for n-tuples of elements of M̄ (orM if specified), where 1≤ n< ω. (Possibly) infinite tuples
are denoted ā, b̄, c̄. ϕ(x, y) will invariably denote an L-formula (typically a stable one) whose free
variables are among x and y. Other lower-case Greek letters will be used for other formulae and/or
ordinals and cardinals. Types will usually be denoted by lower-case Roman letters p, q, r, . . . We
write a ∈M rather than a ∈Mn or a ∈Mn if a is an n-tuple (we don’t distinguish between the
structure M and its domain M).

Definition 1.1. A formula ϕ(x, y) is stable (in T ) iff there do not exist ai, bi for i < ω such that Local
stability

|= ϕ(ai, bj) if and only if i≤ j (1.1)

for all i, j < ω. A formula is unstable iff it is not stable.

We refer to this as local stability because it concerns just one formula ϕ(x, y). Stability (without
a modifier) concerns the local stability of all formulae in a theory; see footnote 27.

Comment 1.A.

(i) In Definition 1.1 we could write i < j instead of i≤ j, the definitions would be equivalent.

(ii) The collection of stable formulae is closed under finite Boolean combinations and negations.
(Henceforth ‘Boolean combination’ will mean ‘finite Boolean combination’.)

(iii) ϕ(x, y) is stable if and only if ϕ∗(y, x) is stable, where ϕ∗(y, x) is ϕ(x, y).3 So stability is ϕ and ϕ∗

symmetric in x and y.
1 That is, T ` ψ or T ` ¬ψ for every sentence ψ ∈ L.
2 Note that some authors use C, C or C instead of M̄. We refrain from using this notation in order to avoid

any confusion with the field of complex numbers.
3 This may seem completely trivial at first, since the formulae are the same, but it isn’t. The stability of ϕ

depends on how we partition its free variables into tuples. When we write ϕ(x, y) we indicate a partition of the
free variables in ϕ into two tuples x and y in that order. By ϕ∗(y, x) we mean the same formula ϕ and indeed the
same partition of the free variables into tuples x and y, but this time in the order y, x. (You might like to think of
it as switching the main variable: x is the main variable of ϕ(x, y), while y is the main variable of ϕ∗(y, x). This
way of viewing it will become useful when we start discussing ϕ- and ϕ∗-types.) To show that ϕ∗(y, x) is unstable,
we would need to find ai, bi for i < ω such that |= ϕ∗(ai, bj) iff i≤ j, which is not the same as (1.1), since we have
|= ϕ∗(ai, bj) iff |= ϕ(bj , ai), not |= ϕ∗(ai, bj) iff |= ϕ(ai, bj). Now, as (iii) states, we do in fact have that ϕ(x, y) is
stable iff ϕ∗(y, x) is stable, but this requires proof.
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1. Local stability and stability

Proofs of (i)–(iii). The proofs of (i) and (ii) are fairly straightforward, see [1, Remark 2.9]
for details. Part (iii) follows from (vi) below by replacing ω with the reverse ordering ω∗

(m<∗ n iff n <m, i.e. 0> 1> 2> · · · ).

(iv) Suppose ai, bi, i < ω satisfy (1.1). Then the ai are all distinct, as are all the bi.

Proof. Suppose al = ak. Without loss of generality assume l < k. Since l ≤ l, we have
|=ϕ(al, bl). Thus, since al = ak, we have |=ϕ(ak, bl). But k 6≤ l, a contradiction. Symmetrical
reasoning covers the bi.

(v) A formula ϕ(x, y) defines a relation R := {(a, b) : |= ϕ(a, b)}, which can be thought of as
bipartite graph. Definition 1.1 then says that ϕ(x, y) is unstable iff there exists an infinite
bipartite subgraph of R of the following form (modulo a certain caveat):

a0 b0

a1 b1

a2 b2

a3 b3
.
.
.

.

.

.

Caveat. Although the ai must all be distinct, as must all the bi (see part (iv) above), the
ai and the bi need not be distinct from each other; that is, there may exist k, l < ω such that
ak = bl. For example, consider (Z, <) and let ϕ(x, y) be the formula x ≤ y. Let ai = bi = i.
Then ϕ(x, y) and ai, bi satisfy (1.1) but ai = bi for all i < ω. One can still think of the ai and
bi as forming a bipartite graph though, just view the bi as copies of the ai.

(vi) In Definition 1.1, one can replace ω with any infinite linear ordering I; that is, there exist
ai, bi for i < ω satisfying (1.1) if and only if there exist a′i, b

′
i for i ∈ I satisfying (1.1).

Proof. (⇒) Suppose there exist ai, bi for i < ω satisfying (1.1) and let I be an infinite linear
ordering. Let LI := L∪ {a′i, b′i : i ∈ I}, where the a′i, b

′
i are constant symbols, and define TI

to be the LI -theory T ∪ {ϕ(a′i, b
′
j) : i, j ∈ I and i ≤ j} (recall that T is the ambient theory).

Consider some finite A⊂ TI . Since any finite linear ordering can be embedded in ω, A has a
model, namely some finite subset of the ai, bi satisfying (1.1). We can thus apply compactness
to obtain a model of TI and we are done.

(⇐) The same compactness argument works again, just switch ω and I.

Lemma 1.2. Let ϕ(x, y) be a stable L-formula, letM be a model and let c∈M̄. Then there exists a
formula ψ(y) overM (i.e. ψ(y)∈LM) which is a positive Boolean combination of formulae ϕ(c′, y)
for some c′ ∈M such that

|= ϕ(c, b) if and only if |= ψ(b)

for all b ∈ M. Moreover, if M is ℵ0-saturated, then we can choose the c′ to be realisations of
tp(c).4

This lemma roughly says that, in a stable setting, externally definable sets are internally de-Externally
and internally
definable sets

finable; more precisely, it says that if ϕ(x, y) is stable, then ϕ-types are definable, in a special way
(see Comment 1.B(ii)).
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1. Local stability and stability

Proof of Lemma 1.2. By induction we will find ci, ai, bi ∈M for i < ω with the following properties:

(1) |= ϕ(c, ai)∧¬ϕ(c, bi) for all i;

(2) |= ϕ(cj , ai)∧¬ϕ(cj , bi) for all i≤ j; and

(3) |= ϕ(cj , ai)→ ϕ(cj , bi) for all j < i.

We will see that whenever the inductive construction fails, the lemma is in fact true and so we
will push on and assume that the construction can continue. We will then eventually see that the
existence of the ci, ai, bi contradicts the stability of ϕ(x, y) and we will be done.

Let’s start the induction. First consider the base case i = 0. We want to find c0, a0, b0 ∈M
such that

(1)′ |= ϕ(c, a0)∧¬ϕ(c, b0);

(2)′ |= ϕ(c0, a0)∧¬ϕ(c0, b0); and

(3)′ |= ϕ(cj , a0)→ ϕ(cj , b0) for all j < 0.

(3)′ holds vacuously. (2)′ follows from (1)′ by Tarski–Vaught: Suppose we have a0, b0 ∈M that
satisfy (1)′. Let χ(x) be ϕ(x, a0)∧¬ϕ(x, b0). Notice that χ(x) is over M. Thus, since |= χ(c) (by
(1)′) and M≺M̄, by Tarski–Vaught there exists c0 ∈M such that M|= χ(c0) and so (2) holds.5

We are left to prove (1)′. Suppose that there are no a0, b0 ∈M satisfying (1)′. Then either
M|= ∀y ϕ(c, y) orM|= ∀y ¬ϕ(c, y). First supposeM|= ∀y ϕ(c, y). By Tarski–Vaught we can find
c′ ∈M such that M|= ∀y ϕ(c′, y). Let ψ(y) be ϕ(c′, y). Then |= ϕ(c′, b) and |= ψ(b) for all b ∈M
and thus the lemma is true. Now suppose M |= ∀y ¬ϕ(c, y). Again using Tarski–Vaught, we can
find c′ ∈M such that M |= ∀y ¬ϕ(c′, y). Let ψ(y) be ϕ(c′, y). Then 6|= ϕ(c′, b) and 6|= ψ(b) for all
b ∈M and thus the lemma is true. So if we cannot find a0, b0 ∈M satisfying (1)′, then the lemma
holds, so assume that such a0, b0 exist.

We now come to the induction step. Suppose that we already have ci, ai, bi satisfying (1)–(3)
for all i < n (where n > 0). We will find suitable cn, an, bn.

Claim 1. We may assume that there exist an, bn ∈ M such that |= ϕ(c, an) ∧ ¬ϕ(c, bn) and
|= ϕ(cj , an)→ ϕ(cj , bn) for all j < n.

Proof of Claim 1. Suppose that no such an, bn exist. Then for all a, b∈M such that |=
∧
j<n ϕ(cj , a)→

ϕ(cj , b) we have
|= ϕ(c, a)→ ϕ(c, b). (∗)

For each a ∈M such that |= ϕ(c, a),6 let

Ja := {j < n : |= ϕ(cj , a)}.

Each Ja is a subset of {0, 1, . . . , n− 1} and so there are only finitely many Ja. Let ψ(y) be the
formula ∨

a∈M s.t.
�ϕ(c,a)

∧
j∈Ja

ϕ(cj , y).

This formula is essentially finite (and thus legitimate) as there are only finitely many Ja. Notice
that ψ(y) ∈ LM.

Subclaim. For all b ∈M we have |= ϕ(c, b) if and only if |= ψ(b).

Proof of subclaim. (⇒) Suppose |= ϕ(c, b) for b ∈M. Then |=
∧
j∈Jb

ϕ(cj , b) and so |= ψ(b). (Note
that the empty conjunction is always true and so the case Jb = ∅ is okay.)

4 For b ∈ M̄ and A ⊆ M̄, tp(b/A) denotes the complete type of b over A in M̄, i.e. tp(b/A) = tpM̄(b/A) :=
{χ(x) ∈ LA : |= χ(b)}. If A= ∅, then we often simply write tp(b).

5 We will use Tarski–Vaught in this way fairly often. We won’t go into as much detail when we use it again.
6 Note that such an a ∈M exists, e.g. a0.
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1. Local stability and stability

(⇐) Suppose that for some a ∈M such that |= ϕ(c, a) we have
∧
j∈Ja

ϕ(cj , b). Then |= ϕ(cj , b)
whenever |= ϕ(cj , a) (by the definition of Ja) and so |=

∧
j<n ϕ(cj , a)→ ϕ(cj , b). Thus |= ϕ(c, b) by

(∗).

The subclaim shows that if no such an, bn exist, then the lemma is true. We may thus assume
that such an, bn do exist and so Claim 1 is proved.

We are now left to find a suitable cn ∈M, namely one such that |= ϕ(cn, ai)∧¬ϕ(cn, bi) for all
i≤ n. Let χ(z) be the formula ∧

i≤n

ϕ(z, ai)∧
∧
i≤n

¬ϕ(z, bi).

Since χ(x) is overM and |= χ(c), by Tarski–Vaught there exists cn ∈M such thatM|= χ(cn). So
the construction is finished.

We now apply Ramsey’s Theorem in a very useful way:Ramsey’s
Theorem

Claim 2. Without loss of generality we may assume either

(i) |= ¬ϕ(cj , ai) for all j < i; or

(ii) |= ϕ(cj , ai) for all j < i.

Proof of Claim 2. We construct a colouring of 2-element subsets of ω as follows: for j < i, colour
{j, i} red iff |= ¬ϕ(cj , ai) or blue iff |= ϕ(cj , ai). By Ramsey’s Theorem, there exists an infinite
subset A ⊆ ω such that all 2-element subsets of A are monochromatic. Define f : ω → A by
f(n) := min(A\{f(i) : i < n}). Then cf(i), af(i), bf(i) satisfy (1)–(3) and either (i) or (ii) and so we
are done.

In case (i) we have |=ϕ(cj , ai) iff i≤ j by (2), contradicting the stability of ϕ(x, y) (cf. Comment
1.A(iii)). In case (ii) we have |= ϕ(cj , bi) iff j < i by (2) and (3), also contradicting the stability
of ϕ(x, y) (cf. Comment 1.A(i)). So both cases lead to contradiction and so the main part of the
lemma is proved.

Finally, for the moreover clause of the lemma, notice that we can choose the cj to realise tp(c)
if M is ℵ0-saturated.

Definition 1.3. Fix some formula ϕ(x, y) ∈ L.ϕ-formulae
and ϕ-types

(i) A ϕ-formula over a set A is a formula χ(x) ∈ LA such that χ(x) is equivalent (w.r.t. the
ambient theory T ) to a Boolean combination of formulae ϕ(x, b) for some b ∈ M̄.7

(ii) A complete ϕ-type over A is a maximally consistent (w.r.t. the ambient theory T ) collection
of ϕ-formulae over A. The set of all complete ϕ-types over A is denoted Sϕ(A). For a given
b ∈ M̄, tpϕ(b/A) denotes the complete ϕ-type of all ϕ-formulae over A realised by b; that is,

tpϕ(b/A) := {χ(x) : χ(x) is a ϕ-formulae over A s.t. |= χ(b)} .

Unless otherwise specified, ϕ-type will mean complete ϕ-type. We will often just write typeImportant
terminological note for ϕ-type when the context is clear, but do be mindful of the difference between types and

ϕ-types, especially in Lemma 1.6 below. We will sometimes write standard type to contrast
with ϕ-type.

Comment 1.B.

(i) If M≺ M̄, then a ϕ-formula over M is equivalent to a Boolean combination of formulae
ϕ(x, b) for some b ∈M (by Tarski–Vaught) and thus a complete ϕ-type overM is essentially
a choice of either ϕ(x, b) or ¬ϕ(x, b) for each b ∈M.

7 What we refer to as a ϕ-formula is sometimes referred to as a generalised ϕ-formula, e.g. [1, Definition 6.9],
since we allow the b to be tuples in M̄, rather than restricting them to A.
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1. Local stability and stability

(ii) If ϕ(x, y) is stable, then any p(x) ∈ Sϕ(M) is definable, i.e. there exists a formula ψ(y) over Definable
ϕ-typesM such that for all b ∈M, ϕ(x, b) ∈ p(x) iff M|= ψ(b); we call ψ(y) the ϕ-definition of p(x)

or just the definition of p(x) if the context is clear.8 Moreover, ψ(y) is a positive Boolean
combination of formulae ϕ(a, y) for some a ∈M and thus ψ(y) is a ϕ∗-formula (since ϕ(a, y)
is ϕ∗(y, a)).

Proof. Since M̄ is saturated, there exists c ∈ M̄ realising p(x). The rest follows from Lemma
1.2 and part (i).

Lemma 1.4. Let T be a countable complete theory and let ϕ(x, y) ∈ L. Then the following are Counting
typesequivalent:

(i) ϕ(x, y) is stable.

(ii) Every p(x) ∈ Sϕ(M) is definable for every M |= T .

(iii) For all cardinals λ≥ ℵ0 and |A| ≤ λ, |Sϕ(A)| ≤ λ.

(iv) For all countable A, |Sϕ(A)| is countable.

Proof. (i) ⇒ (ii) By Lemma 1.2.
(ii) ⇒ (iii) Let |A|,ℵ0 ≤ λ. By the Downward Löwenheim–Skolem Theorem, there exists M

such that A ⊆M and |M| ≤ λ. (Notice that L must be countable because T is countable.) Any
type p ∈ Sϕ(A) extends to a type p′ ∈ Sϕ(M), so we may assume A =M. Now, there are |M|-
many formulae ψ(y) over M and thus there are |M|-many possible candidates for the definition
of p ∈ Sϕ(M). Therefore |Sϕ(A)| ≤ λ by (ii).

(iii) ⇒ (iv) Immediate.
¬(i) ⇒ ¬(iv) Suppose that ϕ(x, y) is unstable. By applying Comment 1.A(vi) with I = R and

then restricting the bi to i ∈Q, we can find ar for r ∈ R and bq for q ∈Q such that |= ϕ(ar, bq) iff
r ≤ q. Let A= {bq : q ∈Q}. Then the ar realise continuum-many distinct types p(x) ∈ Sϕ(A).

Before we move on to more results regarding local stability, we need to go over a few background
topics:

Cantor–Bendixson rank. Let X be a compact topological space and let A⊆X be any subset. CB-rank
Define A′ to be the set of all limit points of A.9 Notice that for the whole topological space X, X ′ is
X minus all the isolated points of X. We define the Cantor–Bendixson derivative of X inductively
as follows:

(1) X(0) =X.

(2) X(α+1) =
(
X(α)

)′
.

(3) X(α) =
⋂
i<αX

(i) if α is a limit ordinal.

(4) X(∞) =
⋂
α∈OnX

(α), where On is the class of all ordinals.

Note that each X(α) is closed and that X(0) ⊇X(1) ⊇ · · · ⊇X(α) ⊇X(α+1) ⊇ · · · ⊇X(∞).
For a point x ∈ X, the Cantor–Bendixson rank (or just CB-rank) of x is defined to be the

largest ordinal α such that x∈X(α), or∞ if x∈X(∞). The CB-rank of a non-empty closed subset
V ⊆X is defined to be the maximal CB-rank of all the points in V ,10 which is well-defined by the
comment below. The CB-rank of ∅ is defined to be −1. The CB-ranks of x and V are denoted
CBX(x) and CBX(V ) respectively.

8 We say the ϕ-definition of p(x) because ψ(y) is unique up to equivalence: Suppose that ψ′(y) is another ϕ-
definition of p(x). Then for all b∈M we haveM|=ψ(b) iff ϕ(x, b)∈ p(x) iffM|=ψ′(b), i.e.M|=ψ(b) iffM|=ψ′(b)
for all b ∈M.

9 A limit point of a subset A is a point x ∈ X such that for all neighbourhoods U of x, (A∩U) \ {x} 6= ∅. A
point a ∈A that is not a limit point of A is called an isolated point of A or said to be isolated in A.

10 In detail: If there exists v ∈ V such that CBX(v) =∞, then the CB-rank of V is defined to be∞. If no such v
exists, then the CB-rank of V is defined to be the largest ordinal α for which there exists v ∈ V with CBX(v) = α.
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1. Local stability and stability

Comment 1.C. Let X be a compact space.

(i) CBX(V ) is well-defined for all closed V ⊆X.

(ii) Let V be closed and suppose CBX(V ) = α<∞. Then the subset V0 := {v ∈ V : CBX(v) = α}
is non-empty and finite.

(iii) For all x ∈X, CBX(x) = α iff x is isolated in the set {y ∈X : CBX(y)≥ α} and CBX(x) =∞
iff x is not isolated in the set {y ∈X : CBX(y) =∞}.

Proof. (i) It suffices to show the following for any limit ordinal α: If for every β < α there exists
v ∈ V with CBX(v)≥ β, then there exists some v0 ∈ V with CBX(v0)≥ α. This follows from the
compactness of X: since the V ∩X(β) are closed and nested (i.e. V ∩X(β) ⊇ V ∩X(β+1) for each
β < α), V ∩X(α) =

⋂
β<α V ∩X(β) is non-empty.

(ii) V0 is non-empty by definition. Now, by way of contradiction, suppose that V0 ∩ V ′0 6= ∅.
Let x ∈ V0 ∩V ′0 . Then x is a limit point of V0 and thus also a limit point of X(α), since V0 ⊆X(α).
So x ∈X(α+1), i.e. CBX(x) ≥ α+ 1. But x ∈ V0 and so CBX(x) = α, a contradiction. Therefore
V0 ∩ V ′0 = ∅, i.e. no point in V0 is a limit point of V0, and thus for each x ∈ V0 there exists an
open set Ux such that V0 ∩Ux = {x}. Now, V0 = V ∩X(α) is closed and thus compact (under the
subspace topology). So, since {V0 ∩Ux}x∈V0 is an open cover of V0, it has a finite subcover. But
each V0 ∩Ux is a singleton, hence V0 is finite.

(iii) This follows from the fact that {y ∈X : CBX(y)≥ α}=X(α) and {y ∈X : CBX(y) =∞}=
X(∞).

Stone space. We can endow Sϕ(A) with a topology. For each ϕ-formula χ(x) over A, defineStone space

Uχ := {p(x) ∈ Sϕ(A) : χ(x) ∈ p(x)}.

We then define the topology by taking these sets Uχ as the basic open sets.11 Equipped with this
topology, Sϕ(A) is called the Stone space of ϕ over A. Note that Sϕ(A) is a totally disconnected,
compact, Hausdorff space under this topology and that in a saturated model M, the Morley rank
of a ϕ-type p is equal to the CB-rank of p in Sϕ(M).

Interlude. Let T be a first-order, 1-sorted theory. The type space Sn(T ) is the space of ultrafiltersLogical vs
topological

compactness
on Bn(T ), where Bn(T ) is the Boolean algebra of formulae ϕ(x1, . . . , xn) up to equivalence modulo
T . Sn(T ) is Hausdorff, compact, 0-dimensional and totally disconneted and thus a profinite space.
The logical compactness of first-order logic is equivalent to the topological compactness of Sn(T ).
End of interlude.

Tree notation. Let α, β be ordinals. We define αβ to be the set of all functions from α to β. WeTrees
then define <αβ as follows:12

<αβ :=
⋃
γ<α

γβ

Let’s consider the case where α= ω and β = 2. A function λ ∈ ω2 is simply an infinite sequence
of 0s and 1s and thus we can think of ω2 as the complete binary tree,13 where the empty function
is the root and each λ ∈ ω2 is a particular infinite branch down the tree.14 Each node in the tree
is given by some µ ∈ <ω2, since µ is a finite sequence of 0s and 1s. If µ ∈ <ω2 is a sequence of
length n, we write µa(i) for the (n+1)-length sequence extending µ by i,15 so µa(0) and µa(1) are
the nodes immediately below µ. Nodes and finite branches are equivalent, since for each µ ∈ <ω2,
µ = λ � n for some λ ∈ ω2 and n < ω (and vice versa). Notice that we can also view <ω2 as the

11 Equivalently, we could take the basic open sets to be Vχ := {p(x) ∈ Sϕ(A) : p(x)∪{χ(x)} is consistent}, since
ϕ-types in Sϕ(A) are complete types and thus p(x)∪{χ(x)} is consistent iff χ(x) ∈ p(x), hence Vχ = Uχ.

12 Note that there is quite some variety in notation in the literature: αβ = βα and <αβ = α>β = β<α.
13 By the complete binary tree we mean the (isomorphism class) of the infinite graph formed by starting at a

root node and then bisecting ad infinitum.
14 By a branch we mean a path starting at the root which contains each node at most once, i.e. it doesn’t go

back on itself. We say that a branch goes down the tree, but this use of direction is solely to help intuition; up,
along or any other suitable preposition would do just as well.

15 Again, there are different notations: µa(i) = µ∧(i) = µa〈i〉= µ∧〈i〉= µai= µ∧i.

8



1. Local stability and stability

complete binary tree, the distinction being that <ω2 contains finite functions n→ 2 for arbitrarily
large n, while ω2 contains infinite functions ω→ 2. This is a subtle but important difference: <ω2
is countable while ω2 has cardinality of the continuum. That might sound contradictory at first,
but it isn’t: <ω2 is the set of nodes, while ω2 is the set of infinite branches.

Corollary 1.5. Let X = Sϕ(M). If ϕ(x, y) is stable, then CBX(p)<∞ for every p ∈ Sϕ(M).16

Proof. By way of contradiction, suppose CBX(p) =∞ for some p∈Sϕ(M). We will find continuum-
many ϕ-types over a countable set, thereby contradicting Lemma 1.4(iv).

Let CBX(p) = ∞ and let χ ∈ p. By Comment 1.C(iii), p is not isolated in Z := {y ∈ X :
CBX(y) =∞}, i.e. any open set containing p intersects Z in at least one point not equal to p.
Thus, since p ∈ Uχ, there exists q ∈ (Z ∩Uχ) \ {p}. So χ ∈ q, q 6= p and CBX(q) =∞. Since q 6= p,
there exists a ϕ-formula χ0 such that χ0 ∈ p and ¬χ0 ∈ q. But χ is in both p and q and thus
each of χ0 and ¬χ0 implies χ (if either implied ¬χ, then we would have a contradiction by modus
ponens). Let χ1 be ¬χ0. Since CBX(p) = CBX(q) =∞, we can repeat this argument indefinitely
to obtain a complete binary tree of ϕ-formulae

χ

χ0

χ00

χ000 χ001

χ01

χ010 χ011

χ1

χ10

χ100 χ101

χ11

χ110 χ111

.

.

.

.

.

.

.

.

.

.

.

.

such that each branch is consistent but any two distinct branches are inconsistent. More formally,
for each µ∈<ω2 we apply the above argument to find χµa(0) and χµa(1) such that χµa(1) is ¬χµa(0),
χµa(0) → χµ and χµa(1) → χµ. This gives us a binary tree of formulae {χµ : µ ∈ <ω2} such that
Σλ := {χλ�n : n < ω} is consistent for each λ ∈ ω2 but {Σλ : λ ∈ ω2} is pairwise inconsistent. Let A
be the set of all parameters (= elements ofM) which appear in formulae in {χµ : µ∈ <ω2}. Notice
that A is countable, since <ω2 is countable and each χµ contains only finitely many parameters.
Now, each Σλ is a partial ϕ-type over A and so is contained in some complete ϕ-type over A. But
{Σλ : λ ∈ ω2} is pairwise inconsistent and thus these complete ϕ-types must all be distinct. Hence
we have ω2-many ϕ-types over A, which is the contradiction we were looking for.

Algebraic closure, automorpisms and canonical parameters. Before we apply the corollary acleq

to obtain some more results, we need to go over some more background material. For A ⊆ M̄,
acleq(A) is the algebraic closure of A taken in M̄eq (rather than in M̄). In detail: We say that
b∈B is algebraic over A inM iff there exists a formula θ(x)∈LA such thatM|= θ(b) and θ(M) :=
{a ∈M :M |= θ(a)} is finite. We then define aclM(A) := {b ∈M : b is algebraic over A in M}.
We then further define acleq(A) := aclM̄eq(A).

The set of automorpisms of a modelM is denoted Aut(M). For a set A, we define Aut(M/A) Aut(M/A)
to be the set of automorphisms ofM that fix A pointwise, i.e. σ ∈Aut(M/A) iff σ ∈Aut(M) and
σ(a) = a for all a ∈ A. An automorphism acts on formulae in the following way: For ϕ(x, y) ∈ L,
b ∈ M and σ ∈ Aut(M), we define ϕ(x, b)σ := ϕ(x, σ(b)). We can extend this to ϕ-types: for
p(x) ∈ Sϕ(A), where A ⊆M, we define p(x)σ := {χ(x)σ : χ(x) ∈ p(x)}. Thus an automorphism
σ ∈Aut(M) induces a map σ : Sϕ(M)→ Sϕ(M).

Let X ⊆ M be a definable set, i.e. X = ϕ(M, a) for some ϕ(x, y) ∈ L and a ∈ M, where Canonical
parametersϕ(M, a) := {b ∈M :M |= ϕ(b, a)}. We can define an equivalence relation Eϕ on M as follows:

Eϕ(a1, a2) iff M |= ∀xϕ(x, a1)↔ ϕ(x, a2). So, in other words, Eϕ(a1, a2) is true iff ϕ(x, a1) and
ϕ(x, a2) both define X. Let a/Eϕ denote the equivalence class of a under Eϕ. We call a/Eϕ the
canonical parameter of X. X is definable over a/Eϕ in Meq.

16 A topological space X with this property (CBX(x)<∞ for every x ∈X) is called scattered.
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1. Local stability and stability

Comment 1.D. Let A⊆ M̄ and consider a definable set X ⊆ M̄ with canonical parameter e.17

(i) For all σ ∈Aut(M̄), σ(X) =X if and only if σ(e) = e.

(ii) σ(X) = X for all σ ∈ Aut(M̄/A) if and only if X is defined over A. In such a situation we
say that X is over A.

(iii) X has finitely many images under Aut(M̄/A) if and only if X is defined over acleq(A). In
such a situation we say that X is almost over A.

Proof. Let X := ϕ(M̄, a).

(i) Consider some σ ∈Aut(M̄).

(⇐) Suppose that σ(e) = e, i.e. σ(b) ∈ e iff b ∈ e (σ is a bijection). First let c ∈ X. Then
|= ϕ(c, a). Thus, since σ is an automorphism, |= ϕ(σ(c), σ(a)). But σ(a)∈ e and so ϕ(x, σ(a))
also defines X. Thus σ(c) ∈X. Hence σ(X)⊆X.

Now let c ∈ σ(X). Then c = σ(d) for some d ∈ X. Thus |= ϕ(d, a) and so |= ϕ(σ(d), σ(a)).
But σ(a) ∈ e and so c= σ(d) ∈X. Hence X ⊆ σ(X) and we are done.

(⇒) Now suppose that σ(X) = X. We want to show that σ(b) ∈ e iff b ∈ e. First let b ∈ e.
Then:

c ∈ σ(X) ⇐⇒ σ−1(c) ∈X (σ is a bijection)
⇐⇒ |= ϕ(σ−1(c), b) (b ∈ e)
⇐⇒ |= ϕ(c, σ(b)) (σ is an automorphism)

So ϕ(x, σ(b)) defines σ(X). But σ(X) =X and so ϕ(x, σ(b)) also define X, i.e. σ(b) ∈ e.
Now let σ(b) ∈ e. Then

c ∈X ⇐⇒ σ(c) ∈ σ(X) (σ is a bijection)
⇐⇒ σ(c) ∈X (σ(X) =X)
⇐⇒ |= ϕ(σ(c), σ(b)) (σ(b) ∈ e)
⇐⇒ |= ϕ(c, b) (σ is an automorphism)

So b ∈ e.

(ii) (⇐) This is very similar to the proof of the (⇐) direction of part (i) and is left as an exercise.

(⇒) Suppose that σ(X) =X for all σ ∈Aut(M̄/A).

Let p(y) := tp(a/A). We claim that b ∈ e for all b |= p.18 So suppose that b |= p. Then
tp(b/A) = tp(a/A). Thus, since M̄ is saturated, there exists σ ∈Aut(M̄/A) such that σ(a) =
b. Thus b ∈ e by part (i) and the claim is proved.

So b |= p implies b ∈ e. Thus by compactness19 there exists a formula ψ(y) ∈ p(y) such that
|= ψ(b) implies b ∈ e. Then the LA-formula ∃y (ψ(y)∧ϕ(x, y)) defines X and we are done.

(iii) The proof is along the same lines as that of part (ii) and is left as an exercise.

We are now ready to apply Corollary 1.5:

Lemma 1.6. Let ϕ(x, y) be stable and p(x) ∈ S(A),20 where A ⊆M. Then there exists q(x) ∈Existence
Sϕ(M) such that

(i) p(x)∪ q(x) is consistent and

(ii) q(x) is definable over acleq(A), i.e. the ϕ-definition of q(x) is over acleq(A).

17 Working in M̄ is simply for convenience, the results hold for any saturated M. Indeed, part (i) in fact holds
for any M, not just saturated M.

18 We write b |= p to mean that b realises the type p.
19 We use compactness in the following way: Let Σ(y) be a partial type such that for all b ∈ M̄, b |= Σ implies

ψ(b). Then there exists a finite Σ′ ⊆ Σ such that for all b ∈ M̄, |=
V

Σ′(b) implies |= ψ(b).
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1. Local stability and stability

Proof. We may assume that M is saturated. (If not, pass to M̄, find q and then restrict q to M;
q �M will have the same desired properties.) We thus have Comment 1.D at our disposal.

Let Y be the subset of Sϕ(M) consisting of all types consistent with p(x). Y is closed, since
any r(x) 6∈ Y is contained in an open set Uχ for some ϕ-formula over A such that χ(x) 6∈ p(x),
and Uχ ∩ Y = ∅, as otherwise χ(x) would be consistent with p(x), a contradiction. By Corollary
1.5 and Comment 1.C(ii), the subset Y0 ⊆ Y consisting of all types of maximal CB-rank in Y is
non-empty and finite. Let q(x) ∈ Y0. Then, since q(x) ∈ Y , p(x) and q(x) are consistent. We are
left to show that q(x) is definable over acleq(A).

Consider some σ ∈ Aut(M/A). Since the formulae in p(x) are LA-formulae, p(x)σ = p(x). Y
is thus setwise invariant under Aut(M/A), as the image of any type containing p(x) will still
contain p(x). Thus Y0 is also setwise invariant under Aut(M/A) by “English grammar”.21 So
{qσ : σ ∈Aut(M/A)} is finite, since q can be mapped only to other members of Y0 and Y0 is finite.
Now, by Comment 1.B(ii), q(x) is definable by some formula ψ(y) ∈ LM. Thus {σ(ψ(M)) : σ ∈
Aut(M/A)} is also finite, since the two sets are in bijection (exercise). Therefore ψ(y) is over
acleq(A) by Comment 1.D(iii).

Note. One can still apply this lemma to ϕ-types, not just standard types: Let r(x) ∈ Sϕ(A).
Consider some extension p(x) ∈ S(A) of r(x), i.e. r(x)⊆ p(x). Such a p(x) exists, although it may
not be unique, since every ϕ-type extends to some standard type. Now apply the lemma to p(x) to
obtain q(x)∈Sϕ(M); q(x) is an extension of r(x). Note that q(x) is unique (see Lemma 1.8 below).

Notation. In light of Lemma 1.6 and for the sake of brevity, we will henceforth write acl(A) for Important
notational noteacleq(A).

Lemma 1.7. Suppose that ϕ(x, y) is stable, p(x) ∈ Sϕ(M) and q(y) ∈ Sϕ∗(M). Let ψ(y), χ(x) ∈ Symmetry
LM be the ϕ-definition of p(x) and the ϕ∗-definition of q(y) respectively. Then χ(x) ∈ p(x) if and
only if ψ(y) ∈ q(y).22

Proof. By way of contradiction, we may suppose wlog that χ(x) ∈ p(x) but ¬ψ(y) ∈ q(y). We will
find ci, di ∈M such that |=χ(ci), |=¬ψ(di) and |=ϕ(ci, dj) iff i≤ j, thereby contradicting stability.

We argue by induction. Suppose that we already have ci, di for i < n (the base case is left as
an exercise). Since M̄ is saturated, we can find c, d ∈ M̄ such that c |= p and d |= q. As |= ¬ψ(di)
for i < n, we have ¬ψ(x, di) ∈ p(x) (since |= ¬ψ(di)⇒ ϕ(x, di) /∈ p(x)⇒¬ϕ(x, di) ∈ p(x)). Hence
|=
∧
i<n ¬ϕ(c, di) ∧ χ(c), as c |= p and χ(x) ∈ p(x). We can thus apply Tarski–Vaught to find

cn ∈M such that |=
∧
i<n ¬ϕ(cn, di)∧ χ(cn). So, since the ci for i ≤ n satisfy χ(x), d |= q and

¬ψ(y) ∈ q(y), we have |=
∧
i≤n ϕ(ci, d)∧¬ψ(d). We again apply Tarski–Vaught to find dn ∈M

such that |=
∧
i≤n ϕ(ci, dn)∧¬ψ(dn). Thus for all i, j ≤ n we have |= ϕ(ci, dj) iff i ≤ j and so we

are done.

Lemma 1.8. Let ϕ(x, y) be stable and let A⊆M be algebraically closed (i.e. acl(A) =A). Suppose Uniqueness/
stationaritythat p1(x), p2(x) ∈ Sϕ(M) are both definable over A (i.e. the ϕ-definitions of p1 and p2 are both

LA-formulae) and that p1 �A= p2 �A. Then p1 = p2.

Proof. Let ψ1(y) and ψ2(y) be the ϕ-definitions of p1 and p2 respectively. We have ψ1(y), ψ2(y) ∈
LA by assumption. ψ1(y) and ψ2(y) are also both ϕ∗-formulae (see Comment 1.B). It suffices to
show M |= ∀y ψ1(y)↔ ψ2(y). Suppose M |= ψ1(b). We want to show M |= ψ2(b). Let q(y) :=
tp(b/A) ∈ S(A). By Lemma 1.6 there exists q′(y) ∈ Sϕ∗(M) which is definable over acl(A) = A
and consistent with q(y). Let χ(x) be the ϕ∗-definition of q′(y). As ψ1(y) is a ϕ∗-formula over A
and M |= ψ1(b), we have ψ1(y) ∈ q′(y). Thus χ(x) ∈ p1 by Lemma 1.7. But χ(x) ∈ LA and so
χ(x) ∈ p1 � A = p2 � A. Thus by Lemma 1.7 again we have ψ2(y) ∈ q′(y). But ψ2(y) ∈ LA and so
ψ2(y) ∈ q(y) = tp(b/A), i.e. M |= ψ2(b), which was what we wanted.

20 Note that p(x) is a complete standard type over A, not a complete ϕ-type (cf. Definition 1.3). S(A) denotes
the space of complete standard types over A.

21 Isomorphisms act on everything: elements, types, words... So, since Y0 is determined by Y and Y is setwise
invariant under Aut(M/A), Y0 is also be setwise invariant under Aut(M/A). Check the details if you’re not
convinced.

22 Cf. Comment 1.B(ii).
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1. Local stability and stability

Lemma 1.9. Let ϕ(x, y) be stable, M⊆N be models and p(x) ∈ Sϕ(N ). Then p(x) is definable
over M if and only if p(x) is finitely satisfiable in M.23

Proof. We may assume that N is saturated.
(⇐) Let ψ(y) be the ϕ-definition of p(x) and suppose that p(x) is finitely satisfiable inM. We

want to show that ψ(y) ∈ LM. By way of contradiction, suppose that ψ(y) /∈ LM. Then, since
ψ(y) ∈ LM iff ψ(N ) is Aut(N/M)-invariant, there exist b, c ∈ N such that tp(b/M) = tp(c/M)
and |= ψ(b) ∧ ¬ψ(c) (the details are left as an exercise). Thus ϕ(x, b) ∧ ¬ϕ(x, c) ∈ p(x). But
ϕ(x, b)∧¬ϕ(x, c) is not satisfied in M: if it were satisfied by some a ∈M, then we would have
tp(b/a) 6= tp(c/a), a contradiction.

(⇒) Now suppose that p(x) is definable by ψ(y) ∈LM but some formula in p(x) is not satisfied
in M. Without loss of generality we may take this formula to be ϕ(x, y). Let |= ψ(b). By Tarski–
Vaught we can find b1 ∈M such that |= ψ(b1). Let a1 ∈M be such that |= ϕ(a1, b1). Note that
|=¬ϕ(a1, b1)∧ψ(b). Again using Tarksi–Vaught, we can find b2 ∈M such that |=¬ϕ(a1, b2)∧ψ(b2).
ϕ(x, b1) ∧ ϕ(x, b2) ∈ p(x), so let a2 ∈ M be such that |= ϕ(a2, b1) ∧ ϕ(a2, b2). Again we have
|= ¬ϕ(a2, b). We continue in this way to find a1, b1, a2, b2, . . . ∈M such that |= ϕ(ai, bj) iff i ≤ j,
contradicting stability.

Note. The above proof adapts to the following: p(x) is definable overM iff p(x)∪p0(x) is finitely
satisfiable in M for any p0 ∈ S(M) that is consistent with p(x).

Unstable counterexample. Let M= (R, <)≺N and let ϕ(x, y) be x < y. Define p(x) := {x >
b : b ∈ N} ∈ Sϕ(N ). p(x) is definable over N by the formula b = b, since x > b ∈ p(x) iff b = b for
all b ∈N . However, p(x) is not finitely satisfiable in M: pick c ∈N such that c > a for all a ∈ R.

More generally, suppose that M≺N are models of DLO (or RCF) where N is saturated. Let
p(x) ∈ S1(N ) be Aut(N/M)-invariant. Then there is a dichotomy: either p(x) is definable over
M or p(x) is finitely satisfiable in M.

We now come to two very important concepts, dividing and forking:

Definition 1.10. (No stability is assumed.) Let A⊆ M̄.Dividing
and forking

(i) A formula ϕ(x, b) divides over A iff there exists an A-indiscernible sequence (bi)i<ω with
b0 = b such that {ϕ(x, bi) : i < ω} is inconsistent, i.e. |= ¬∃xϕ(x, b0)∧ · · · ∧ϕ(x, bn) for some
n < ω.24

Example 1. If b ∈ aclM̄(A) and ϕ(x, b) is consistent (i.e. |= ∃xϕ(x, b)), then ϕ(x, b) does not
divide over A.

Proof. Since b ∈ aclM̄(A), there exists θ(x) ∈ LA such that |= θ(b). Let (bi)i<ω be a sequence
of A-indiscernibles with b = b0. Then |= θ(bi) for every i < ω (by A-indiscernibility). But
θ(M̄) := {a ∈ M̄ : |= θ(a)} is finite by the definition of aclM̄(A) and so only finitely many of
the bi can be distinct, contradicting Comment 1.E(i) below.

Notice that any inconsistent ϕ(x, b) divides over any set A, since |= ¬∃xϕ(x, b) and the
constant sequence (b)i<ω is trivially A-indiscernible.

Example 2. If b /∈ aclM̄(A), then x = b divides over A, since we can find distinct A-
indiscernibles b= b0, b1, b2, . . . and |= ¬∃xx= bi ∧x= bj for any i 6= j.

Example 3. Consider the (complete) theory Th(Q, <). In this theory the formula a < x < b
divides over ∅ for any a < b.

23 A set of formula Σ(x) is said to be finitely satisfiable in M iff every finite subset of Σ is realised in M. In
the case of a complete ϕ-type p(x), this is equivalent to every formula χ(x) ∈ p having a solution in M, since the
conjunction of a finite set of ϕ-formulae in p is itself a ϕ-formula in p.

24 A sequence (bi)i∈I is A-indiscernible iff for any formula ψ(x1, . . . , xn) ∈ LA and for any i1 < · · · < in and
j1 < · · ·< jn in I, we have |= ψ(bi1 , . . . , bin )↔ ψ(bj1 , . . . , bjn ).
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1. Local stability and stability

Proof. Th(Q, <) has quantifier elimination and so tp(ab/∅) is entirely determinded by the
relation a < b.25 So pick ai, bi such that a < b < a1 < b1 < a2 < b2 < · · · , i.e. the interval
(ai, bi) shifts along to the right with each step. Then the ai, bi are ∅-indiscernible and the
formulae ai < x < bi are pairwise inconsistent.

(ii) A formula ϕ(x, b) forks over A iff ϕ(x, b) implies (w.r.t. the ambient theory T ) a finite dis-
junction

∨k
i=0 ψi(x, ci) such that each ψi(x, ci) divides over A.

(iii) Let Σ(x, b̄) be a partial type that is closed under finite conjunctions.26 Σ(x, b̄) divides/forks
over A iff some formula in Σ(x, b̄) divides/forks over A.

Comment 1.E.

(i) Suppose that a consistent formula ϕ(x, b) divides over A. Let the sequence (bi)i<ω witness
the dividing. Then the bi are pairwise distinct.

Proof. Suppose there exist i < j such that bi = bj . Then by A-indiscernibility we must have
bi′ = bj′ for any i′ < j′. Thus the sequence (bi)i<ω is constant and so {ϕ(x, bi) : i < ω} =
{ϕ(x, b)}, which is consistent, a contradiction.

(ii) Σ(x, b̄) divides over A if there exist A-indiscernibles b̄= b̄0, b̄1, b̄2, . . . such that
⋃
i<ω Σ(x, b̄i)

is inconsistent.

(iii) In general, dividing ⇒ forking (since a formula implies itself). We will see that if T is
stable,27 then in fact forking ⇒ dividing. The following example shows that this does not
hold in general, however:

Example. Consider the language L= {B}, where B is a ternary relation symbol. Let C be a Forking 6⇒ dividing
circle considered as an L-structure, where B is interpreted as clockwise betweenness on the
circle; that is, C |=B(a, b, c) iff b lies on the clockwise arc from a to c and a, b, c are distinct.
We work in Th(C) (a complete theory). Let a1, a2, a3 ∈ C split the circle up into three arcs,
for example:

a1

a3 a2

Now, the formula x = x does not divide over ∅. It is also stable. However, x = x implies∨
i 6=j B(ai, x, aj), since all points on C lie between two of a1, a2, a3 (including a1, a2, a3 them-

selves), and each B(ai, x, aj) divides over ∅ by very similar reasoning to that in Example 3
above. So x= x is stable, does not divide over ∅, but does fork over ∅.

Proposition 1.11. Let ϕ(x, y) be stable, A ⊆ M and p(x) ∈ Sϕ(M). Then the following are
equivalent:

(i) p(x) is definable over acl(A).

(ii) p(x) does not divide over A.

25 For arbitrary tuples a, b, c and a set A, tp(ab/Ac) is shorthand for tp((a, b)/A∪{c}).
26 Recall that b̄ denotes a (possibly) infinite tuple.
27 A complete theory T is stable iff all formulae ϕ(x, y) are stable in T (no matter how the free variables of ϕ are

partitioned).
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1. Local stability and stability

Proof. (i) ⇒ (ii) By passing to M̄ we may assume that M is saturated. As p(x) is definable over
acl(A), p(x) is Aut(M/acl(A))-invariant. Consider some ψ(x, c) ∈ p(x). Since M is saturated, we
can find an A-indiscernible sequence c = c0, c1, c2, . . . in M. Then (exercise) tp(ci/acl(A)) is the
same for all i < ω. By the Aut(M/acl(A))-invariance of p(x), we have ψ(x, ci) ∈ p(x) for all i < ω
and thus {ψ(x, ci) : i < ω}= {ψ(x, c)}. So ψ(x, c) does not divide over A and hence p(x) also does
not divide over A.
¬(i) ⇒ ¬(ii) We can again assume M to be saturated. Assume that p(x) is not definable

over acl(A). Let p0 = p(x) � acl(A). By Lemmas 1.6 and 1.8 there exists a unique extension
p1(x) ∈ Sϕ(M) of p0(x) that is definable over acl(A). So p(x) 6= pi(x). Without loss of generality
we have some ϕ(x, b) ∈ p(x) but ¬ϕ(x, b) ∈ p1(x) (the proof for the other case is symmetric). We
will show that p0(x)∪ {ϕ(x, b)} divides over A, thereby showing that p(x) divides over A. Let
q0(y) = tp(b/acl(A)). By Lemma 1.6 we can find q(y) ∈ Sϕ∗(M) that is definable over acl(A) and
consistent with q0(y). Now take a small model M0 ≺M such that A ⊆M0 (or acl(A) ⊆M0, it
doesn’t matter). So q(y) is definable overM0. By the note after Lemma 1.9, q(y)∪ q0(y) is finitely
satisfiable in M0. Hence (exercise) q(y)∪ q0(y) extends to a complete type q∗(y) ∈ S(M) that is
also finitely satisfiable in M0. Let χ(x) be the ϕ∗-definition of q(y) ∈ Sϕ∗(M). By the proof of
Lemma 1.2, in particular the moreover clause, there are b0, b1, b2, . . . such that b0 |= q∗ �M0 and
bi+1 |= q∗ �M, b0, . . . , bi for all i < ω and such that χ(x) is a positive Boolean combination of the
ϕ(x, bi)’s, i.e. the ϕ∗(bi, x)’s. As q∗ is finitely satisfiable in M0, (bi)i<ω is indiscernible over M0

and hence also over A.

Interlude. New notation, new p’s and q’s.28 Suppose thatM is saturated and that p(x) ∈ S(M)
is Aut(M/M0)-invariant for some small M0 ≺M, i.e. whether or not ϕ(x, b) ∈ p(x) depends on
tp(b/M0), e.g. p(x) is definable over M0 because p(x) is finitely satisfiable in M0. In M, let
a0 |= p �M0 and ai+1 |=M0, a0, . . . , ai for all i < ω. Then (ai)i<ω is indiscernible over M0 and
tp(a0, a1, . . . /M0) depends on p and M0.

Also note that if p0(x) ∈ S(M0), then by compactness p0(x) has an exntension to p(x) ∈ S(M)
which is finitely satisfiable in M0. We apply the above construction to get an M0-indiscernible
sequence (ai)i<ω. End of interlude.

Now, {¬χ(x)} ∪ {ϕ(x, bi) : i < ω} is inconsistent. Let ψ(y) be the ϕ-definition of p1(x).
tp(b/acl(M))∪ q(y) is consistent, |= ¬ψ(b) and ψ(y) is a ϕ∗-formula, so q(y) /∈ q(y). By Lemma 1.7
we habe that χ(x) /∈ p1(x). But χ(x) is over acl(A) and is a ϕ-formula and so ¬∈ p0(x) = p1 � acl(A).
So we’ve shown that p(x)∪ {ϕ(x, bi) : i < ω} is inconsistent and that (bi)i<ω is indiscernible over
M0 and thus also over A. So, to see that p0(x) ∪ {ϕ(x, b)} divides over A, it suffices to show
that tp(b/acl(A)) = tp(bi/acl(A)). But we have this, since q0 = tp(b/acl(A)), q0(y) ⊆ q∗(y) and
bi |= q∗ �M0 and hence bi |= q∗ � acl(A).

Remark 1.12. Let ϕ(x, y) be stable, A⊆M and b ∈M. Then the following are equivalent:

(i) There exists p(x) ∈ Sϕ(M) which is definable over acl(A) and contains ϕ(x, b).

(ii) ϕ(x, b) does not divide over A.

Proof. (i) ⇒ (ii) Use the (i) ⇒ (ii) part of Proposition 1.11.
(ii) ⇒ (i) Adapt the (i) ⇒ (ii) part of Proposition 1.11. Let q0(y) = tp(b/acl(A)). Consider an

extension q(y) ∈ Sϕ(M) of q0(y) whch is definable over acl(A). Let χ(x) be the ϕ∗-definition of
q(y). Show that χ(x) is inconsistent.

Comment 1.F. Everything we have done regarding ϕ-types for stable vphi(x, y) extends to∆-types
∆-types, where ∆ is a finite set of stable formulae ϕ(x, y0), . . . , ϕ(x, yk).

Proof. This can be seen directly or through so-called coding through case analysis: Add constants
1, . . . , k (just two would in fact suffice, we could take different lengths of constants). Define
ψ(x, y1, . . . , yk, z) to be the following formula:

(z = 0∨ · · · ∨ z = k)∧ (z = i→ ϕi(x, yi)) (1.2)
28 In stability theory, as in life, one should always mind one’s p’s and q’s.
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1. Local stability and stability

So, for example, p(x) ∈ S∆(M) is definable over acl(A) iff for all i, p(x) � ϕi is definable over
acl(A).

Corollary 1.13. Suppose that ϕ1(x, y) and ϕ2(x, z) are both stable formulae that each divide over
A. Then ϕ1(x, y)∨ϕ2(x, y) divides over A.

Proof. Note that ψi(x, y)∨ψ2(x, z) is stable (Comment 1.A(ii)). Let ∆ = {ψ1, ψ2}. Suppose that
ϕ1(x, y)∨ϕ2(x, y) does not divide over A. By Remark 1.12, there exists p(x) ∈ S∆(M̄) containing
ϕ1(x, b)∨ϕ2(x, c) which is definable over acl(A). Either ψ1(x, b)∈ p(x) or ψ2(x, c)∈ p(x) (or both).
Since p(x) is Aut(M̄/acl(A))-invariant, in the first case ψ1(x, b) does not divide over A, while in
the second case ψ2(x, c) does not divide over A (again by Remark 1.12). In both cases we have a
contradiction.

Lemma 1.6*. Let ∆ be a finite set of stable formulae ϕi(x, yi), A ⊆M and p(x) ∈ S(A). Then
there exists q(x) ∈ S∆(M) such that p(x)∪ q(x) is consistent and q(x) is definable over acl(A), i.e.
for each i, q(x) � ϕi is definable over acl(A).

Proof. This follows from Lemma 1.6 and Comment 1.F.

Proposition 1.14. Suppose that T is stable (see footnote 27), p(x) ∈ S(A) and A ⊆M. Then
there exists an acl(A)-definable extension p′(x) ∈ S(M) of p(x).

Proof. By passing to M̄eq, we may assume that A is algberaically closed. By Lemma 1.6, for each
ϕ(x, y) there exists p(x)ϕ ∈ Sϕ(M) definable over acl(A) and consistent with p(x), in particular
p(x) �A⊆ p(x). Note that by Lemma 1.8, p(x)ϕ �A has a unique extension q(x)∈ Sϕ(M) definable
over acl(A). Lemma 1.6* tells us that if ∆ = {ϕ1(x, y1), . . . , ϕn(x, yn)}, then there exists a p(x)∆ ∈
S∆(M) definable over A and consistent with p(x). So by the uniqueness just mentioned, p(x)∆ �
ϕi = p(x)ϕi for all i= 1, . . . , n. Hence by compactness

⋃
ϕ(x,y) p(x)ϕ is a complete type q(x)∈S(M),

p(x)⊆ q(x) and q(x) is definable over A (the details are left as an exercise).

Proposition 1.15. Let T be stable, p(x) ∈ S(B) and A⊆B. Then the following are equivalent:

(i) ϕ(x, b) does not divide over A.

(ii) ϕ(x, b) does not fork over A.

(iii) There exists M⊇B and an acl(A)-definable extension p′(x) ∈ S(M) of p(x).

If p(x) = tp(c/B), then (1)–(3) say that c is independent from B over A, which we denote c |̂ A B.

Proof. (i)⇒ (ii) Suppose that ϕ(x, y)∈ p(x) forks over A. So ϕ(x, b)→ ψ1(x, c1)∨ψ2(x, c2), where
each ψu(x, ci) divides over A. But ψ1(x, y1) and ψ2(x, y2) are both stable and so by Corollary 1.13
ψ1(x, c1)∨ψ2(x, c2) divides over A. Thus ϕ(x, b) divides over A, a contradiction.

(ii)⇒ (iii) (This implication is the reason for introducing the notion of forking.) If p(x)∈ S(B)
does not fork over A, then p(x)∪{¬ψ(x, c) : c ∈M, ψ(x, c) divides over A} is consistent and thus
exntends to p′(x) ∈ S(M) which does not divide over A. By Proposition 1.11, p′(x) is definable
over acl(A).

(iii) ⇒ (i) This follows from the (i) ⇒ (i) of Proposition 1.11.

Conclusion 1.16. Let T be stable. Then:

(i) Finite character: p(x) ∈ S(B) does not fork over A⊆B if p(x) �Ab̄ does not fork over A for
all finite b̄ ∈B.

(ii) Transitivity: Let A⊆B ⊆C abd p(x) ∈ S(C). If p(x) does not fork over B and p(x) �B does
not fork over A, then p(x) does not fork over A.

(iii) Symmetry: a |̂ A b iff b |̂ A a.

(iv) Any p(x) ∈ S(A) has a global non-forking extension p′(x) ∈ S(M̄).

(v) If A is algebraically closed, then the global non-forking extension p′(x) ∈ S(M̄) is unique.
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1. Local stability and stability

(vi) Let p(x) ∈ S(A). Then set of global non-forking extensions in S(M̄) of p(x) are conjugates
over Aut(M̄/A).

Proof. Exercise: use various previous results and/or consult [5] and [1].

Definition 1.17. A theory T is simple iff for every p(x) ∈ S(M̄), p(x) does not divide over small
A⊆M, |A| ≤ |T |.

Stable implies simple, but the converse does not hold. (1)–(4) in Conclusion 1.16 hold for
simple T , while (1)–(4) + (5) characterise stability.
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Chapter 2

Stable Group Theory

Goal: Give an account of the most general form of stable group theory, i.e. type definable homoge-
neous spaces. Our work will be in line with [5], except with corrections (in particular, a correction
of [5, Lemma 1.6.4]).

Stable group theory ∼ equivariant stability (‘there’s a group action around’) ∼ forking in the
presence of a group action. This is a part of pure model theory.

Definition (G,X) is a homogeneous space if (G,X) is a transitive (has only one orbit) group Homogeneous
spaceaction.

Fix x0 ∈X and let H = Stab(x0). Then there is a G-invariant bijection between G/H (the set
of left cosets of H) and X. Explicitly, gH ∈G/H 7→ gx0, and in the other direction, x ∈X 7→ gH
where g satisfies gx0 = x; such a g exists by transitivity. One routinely checks that this is well-
defined and indeed G-invariant.

In different categories, homogeneous spaces give different objects of interest:

1. Topological spaces: G is a topological group, X a topological space, action is continuous. (In
this context, it is more interesting to deal with actions with dense orbits, instead of actions
with one orbit). Here, H is a closed subgroup.

2. Differentiable manifolds: G is a Lie group, X a differentiable manifold, C∞ action.

3. Algebraic varities: G algebraic group, X algebraic variety, action is ‘regular’, H algebraic
subspace, G/H is a smooth algebraic variety.

4. Model theory, i.e. category of definable over A sets: This is what we will be studying!

Definition 2.1. Let T be a complete theory, M̄ a saturated model, and A,B be “small” sets of Type-definability/
∞-definabilityparameters.

(i) X ⊆ M̄n (or ∈ M̄ eq
) is type-definable, or

∧
-definable, or ∞-definable, over A if X is the set

of solutions of a partial type Σ(x̄) ∈ LA.

(ii) A homogeneous space (G,S) is type definable over A if the set G, the set S, and the graphs
of the group operations and of the action are all type definable over A.

∗ ∗ ∗
Romantic Interlude (but no forking... :P) There’s an analogy between automorphism groups
and definable groups. Let M be a saturated structure, G be definable in M , and (G,X) be a
regular action (1-orbit and gx= hx⇒ g = h). Let M ′ be a 2-sorted structure (M,X) in which the
action is definable. Then, Aut(M ′/M) is plainly (isomorphic to) a subgroup of the permutations
of X. Furthermore, if σ ∈ Aut(M ′/M) and g · x = y, then g · σ(x) = σ(y), i.e. σ must commute
with the G-action. The converse also holds, so we have that Aut(M ′/M) is isomorphic to Gop, the
set of permutations of X which commute with the G-action.

Via this isomorphism, it can be seen that various notions in each area are actually analogues,
for example, strong types and G0, or, Lascar strong types and G00.
∗ ∗ ∗
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2. Stable Group Theory

Remark When T is stable, a ∞-definable group is an intersection of definable groups. In general,
this is not true. We provide an example of a ∞-definable group which is not an intersection of
a nested sequence of definable groups. Take a saturated model of (R, <,+� [−1, 1], q ∈ Q). Then
{a ∈M :− 1

n < a < 1
n , n= 1, 2, 3, . . .} is the example.

Question Is there a theory with a ∞-definable infinite group but no definable infinite groups?

Remark 2.2. Let (G,S) be ∞-definable over A. Then the group operation is given by the restric-
tion of some A-definable partial function to G×G. Similarly for the action.

Proof. Let Σ(x, y, z) be the partial type defining the group operation. The goal is to find a formula
σ(x, y, z) which is the graph of a partial function on M̄ such that σ(M̄3)∩G3 = Σ(M̄3). This is
easy to achieve via compactness; the details are left as an exercise for the reader.

Definition Let (G,S) be a ∞-definable over A homogeneous space. X ⊆ S is relatively definableRelative
definability if it is of the form {a ∈ S : ψ(a)}, where ψ(x) is a formula with parameters.

Remark: The relatively definable subsets of S form a Boolean algebra.

Remark: If X is a relatively definable subset of S × S, then it is not necessarily the case that
π(X)⊆ S is relatively definable, even if stability is assumed.

Definition 2.3.Generic subsets
and generic types

(i) A relatively definable subset X ⊆ S is generic if there exists g1, ..., gn s.t. g1X ∪ . . .∪gnX = S.

(ii) A global type p(x) ∈ SS(M̄) (note that p(x) |= x ∈ S) is generic if every formula ψ(x) ∈ p(x)
defines a generic subset, i.e. ψ(M̄)∩S is generic.

Our first aim is to prove the existence of generic types in a stable theory. Before we can do
this, we need a couple more results from local stability theory.

Lemma 2.4. Let ϕ(x, y) be a stable formula, A be a set of parameters, b an element. Then TFAE:

(i) ϕ(x, b) does not divide over A.

(ii) Some positive boolean combination of A-conjugates of ϕ(x, b) is consistent and definable over
A (i.e. equivalent to a formula with parameters in A).

Remark: An A-conjugate of ϕ(x, b) is a formula ϕ(x, b′) where tp(b′/A) = tp(b/A) (or where there
is a σ ∈Aut(M̄/A) s.t. σ(b) = b′.)

Remark: ϕ(x) is ‘over A’ or equivalent to a formula with parameters in A iff ϕ(M̄) is Aut(M̄/A)
invariant.

Motto of Lemma: ‘A formula that doesn’t divide isn’t very far from a formula definable over A.’

Proof. (ii)⇒ (i). Let ψ(x) over A be given as in (ii), so ψ(x) is a consistent ϕ-formula over A.
Hence, let p(x)∈ Sϕ(A) contain ψ(x). By Lemma 1.6, let p∗(x)∈ Sϕ(M̄) extend p and be definable
over acl(A).

Now, ψ(x) is a finite disjunction of finite conjunctions of translates ϕ(x, b′) of ϕ(x, b), and,
ψ(x)∈ p∗. Hence, ϕ(x, b′)∈ p∗(x) for some b′ s.t. tp(b′/A) = tp(b/A). By (easy part of) Proposition
1.11, ϕ(x, b′) does not divide over A, and so ϕ(x, b) does not divide over A.

(i)⇒ (ii). Assume (i) holds. Let p(x) ∈ Sϕ(M̄) contain ϕ(x, b) and be definable over acl(A).
Let q(y) ∈ Sϕ∗(M̄) be definable over A and consistent with tp(b/acl(A)) = q0(y). Let ψ(y) be
ϕ-definition of p(x) and σ(x) be ϕ∗-definition of q(y).

Since ϕ(x, b) ∈ p(x), ψ(b) holds. Since q is consistent with q0(y), we then get that ψ(y) ∈ q.
Then by Lemma 1.7, σ(x) ∈ p(x). In particular, σ(x) is consistent, and we know it is over acl(A).
By (moreover clause of) Lemma 1.2, σ(x) is a positive Boolean combination of formulas ϕ(x, b′)
with b′ ∈ M̄ realising q0(y), i.e. of acl(A)-conjugates, and hence of A-conjugates, of ϕ(x, b).

σ(x) is definable over acl(A), but not necessarily over A. This is resolved by taking the disjunc-
tion of all A-conjugates of σ(x) (which will be a finite disjuction by the finiteness in the definition
of algebraic closure), which will be definable over A.
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2. Stable Group Theory

Lemma 2.5. Let T be any theory and let ϕ(x, y) be stable. Suppose that ϕ(x, b) divides over A.
Let q(y) ∈ tpϕ∗(b/A), q∗(y) ∈ Sϕ∗(M̄) an extension of q(y) definable over acl(A). Then there is
a k s.t. whenever (bi : i < ω) are s.t. b0 |= q∗(y)�acl(A), . . . , bn+1 |= q∗(y)�acl(A, b0, ..., bn), then
{ϕ(x, bi) : i < ω} is k-inconsistent.

Proof. First show that {ϕ(x, bi) : i < ω} is inconsistent. Suppose not, so for some bi as in the
statement of the lemma, {ϕ(x, bi) : i <ω} is consistent. Let p(x)∈Sϕ(A) s.t. p(x)∪{ϕ(x, bi) : i <ω}
is consistent. Let p∗(x) ∈ Sϕ(M̄) s.t. p∗(x) extends p(x) and is definable over acl(A).

Let r(x) ∈ Sϕ(A, bi)i<ω extend p(x)∪{ϕ(x, bi) : i < ω}. Let r∗(x) ∈ Sϕ(M̄) extend r(x) and be
definable over acl(A, bi)i<ω.

Let χ(x) be the ϕ∗ definition of q∗(y), so χ(x) is a ϕ-formula over acl(A).
Let θ(y) be the ϕ definition of p∗(x), so θ(y) is a ϕ∗-formula over acl(A).
Let ψ(y) be the ϕ definition of r∗(x), so ψ(y) is a ϕ∗-formula over B0 = acl(A, b0, ..., bn), some n.

Now, ¬ϕ(x, b) ∈ p∗(x) by Remark 1.12, so ¬θ(b), so ¬θ(y) ∈ q∗(y), so by symmetry ¬χ(x) ∈
p∗(x), so ¬χ(x) ∈ p(x), so ¬χ(x) ∈ r(x) ⊂ r∗(x), so by symmetry ¬ψ(y) ∈ q∗(y). Now, ¬ψ(y) is
over B0 and bn |= q∗�B0, so |= ¬ψ(bn), so ¬ϕ(x, bn) ∈ r∗, contradiction.

Now we want to find the finite bound k. It evidently looks like a compactness argument will
be needed. However, since ‘x ∈ acl(A)’ is not expressible in a first-order way (as it requires an
infinite disjunction over all formulas over A), we cannot use compactness immediately. So, let
A ⊆M0 ⊆M1 ⊆ . . . be a sequence where M0 is saturated over A and for every n < ω, Mn+1 is
saturated over Mn.

Claim. Whenever (bi : i < n) is such that b0 |= q∗�A, bi+1 |= q∗� acl(A, b0, . . . , bi), there exist
b′0, b

′
1 . . . , b

′
n ≡A b0, . . . , bn s.t. b′0 ∈M0 realises q∗�A and b′i+1 ∈Mi+1 realises q∗�Mi.

Proof of Claim. Let b′0 realise tp(b0/A) in M0. WMA b′0 = b0, so b0 ∈M0. By Lemmas 1.6 and
1.8, tpϕ∗(b1/acl(A, b0)) has a unique extension to q∗∗(y)∈ Sϕ∗(M̄) definable over acl(Ab0) which is
consistent with tp(b1, acl(Ab0)). But q∗(y) is already such a type, so q∗∗(y) = q∗(y). In particular,
q∗(y)∪ tp(b1/acl(Ab0)) is consistent. So q∗(y)�M0 ∪ tp(b1/acl(Ab0)) is consistent, so realised in
M1, by b′1 say, so tp(b0b1/A) = tp(b′0b

′
1/A). Continuing in this fashion proves the claim.

So now suppose for contradiction that for each k, we can find b0, . . . , bk such that b0 |= q∗�
acl(A), bi |= q∗�acl(Ab0 . . . bi−1) for i > 0, and, {ϕ(x, bi) : i≤ k} is consistent. By the claim, we can
further assume that bi ∈Mi for all i≤ k, b0 |= q∗�acl(A), and, bi |= q∗�Mi−1 for i > 0.

Now we use a compactness argument: To the language add constants c0, c1, c2, . . . (correspond-
ing to the bi), predicates P0, P1, P2, . . . (corresponding to the Mi) and a constant d (corresponding
to a witness of consistency of the ϕ(x, bi)). To the theory add sentences to say that A⊆ P0, P0 |=
Th(M̄, a)a∈A, P0 ≺ P1 ≺ P2 ≺ . . ., ci ∈ Pi for each i < ω, ci+1 |= q∗�Pi and ϕ(d, ci) for every
i. This theory has a model by compactness, but this contradicts first part of this proof (that
{ϕ(x, bi) : i < ω} is inconsistent).

We are now in a position to prove:

Proposition 2.6. Assume T stable, and (G,S) a ∞-definable over A homogeneous space. Then

(i) The collection of non-generic relatively definable subsets of S forms a proper ideal in the
Boolean algebra of relatively definable subsets of S.

(ii) Let X ⊆ S be relatively definable over B. Then X is non-generic iff there exists an inde-
scernible over B sequence (gi : i < ω) of elements gi ∈G s.t. {giX : i < ω} is inconsistent (i.e.⋂
i<ω giX = ∅, i.e.

⋂
i≤n giX = ∅ for some n).

Corollary (of (i)). Assume T stable and (G,S) a ∞-definable over A homogeneous space. Then
there is a global generic type.

Proof of Corollary. By (i), the set of non-generic relatively definable subsets of S forms an ideal.
Hence, the set of complements of non-generic relatively definable subsets of S forms an ultrafilter.
Noting that the complement of a relatively definable set is relatively definable, let p(x) be the
set of formulas which define the sets in this ultrafilter. Since an ultrafilter is closed under finite
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intersection and does not contain the empty set, p(x) is finitely realisable in S. Since an ultrafilter
is maximal, p(x) is also maximal. Together these two facts imply that p(x) is a complete type over
S.

It remains to show that p(x) is generic, which reduces to showing that the complement of a
non-generic is generic. This follows from ‘ideal-ness’: if both X and its complement were non-
generic, then their union is non-generic (by definition of ideal), but their union is S, which we
know is generic.

Proof of Proposition 2.6. (i) By adding constants to L, we can assume A = ∅. Trivially, S is
generic and any (relatively definable) subset of a non-generic is non-generic, so we only need to
show that if X,Y are both non-generic, then X ∪ Y is non-generic. The strategy is to find an
auxiliary structure M0 with relations RX , RY and RX∪Y such that: they are all stable, RX (resp.
RY , RX∪Y ) divides if and only if X (resp. RY , RX∪Y ) is non-generic, and, RX∪Y ↔RX ∨RY . This
gives us the result: X and Y are non-generic implies RX and RY divide, which implies RX ∨RY
divides (by Corollary 1.13), so RX∪Y divides, so X ∪Y is non-generic.

Before defining M0, note that we will only have one predicate R instead of the purported three.
This is for notational convenience, since the arguments with one predicate go through when we add
more predicates. So, let X be a fixed relatively definable subset of S and let M0 be the 2-sorted
structure (S,G,R) where R⊆ S×G is defined as R(x, y) ..= x ∈ yX. Let T0 = Th(M0).

Claim. R(x, y) is stable in T0.

Proof of Claim. Suppose not, so we can find ai, gi for i < ω such that R(ai, gj) iff i ≤ j. By
definition of M0, this means that in our original structure M̄ we have ai ∈ gjX iff i ≤ j. By
Ramsey and compactness, WMA that ((ai, gi) : i < ω) is an indiscernible sequence (in M̄).

Since S is ∞-definable and X is relatively definable, X is ∞-definable, by {χi(x) : i ∈ I} say.
Then, fixing j < ω, gjX is defined by {χi(g−1

j x) : i ∈ I}. Now fix i < ω greater than j, so that
ai 6∈ gjX. Hence, for some fixed i∗ ∈ I, we have ¬χi∗(g−1

j ai). By indiscernibility this means that
for all j < i < ω, we have ¬χi∗(g−1

j ai). But then we have χi∗(g−1
j ai) iff i ≤ j, contradicting T

stable.

Note that in T0, there is a unique 1-type over ∅ realised in the S sort (in any model), equiva-
lently, “x ∈ S” isolates a complete type over ∅ in T0, equivalently, the automorphism group of M0

is transitive on S. The last equivalence is easy to prove: for every g ∈G we get the automorphism
of M0 x∈ S 7→ gx and h∈G 7→ g.h (automorphism since x∈ yX⇒ gx∈ gyX). Since G is transitive
on S, we conclude that the Aut(M0) is transitive on S.

Claim. X is generic in T0 iff R(x, 1(= idG)) does not divide over ∅ in T0.

Proof of Claim. ⇒: Suppose X generic so g1X ∪ . . .∪ gnX = S for some gi. Therefore the formula
R(x, g1)∨ . . .∨R(x, gn)↔ x ∈ S is in T0. Since the gi’s have the same 1-type as 1, the R(x, gi)’s
are ∅-conjugates of R(x, 1). So by Lemma 2.4, we get that R(x, 1) does not divide over ∅.
⇐: Conversely, suppose R(x, 1) does not divide over ∅. Then by Lemma 2.4, and working

in a saturated extension M∗0 , some positive Boolean combination of ∅-conjugates of R(x, 1) is
consistent and over ∅. So then we get, for some g∗i , R(x, g∗1)∨ . . .∨R(x, g∗n)↔ x ∈ S∗, since S∗ is
the only non-empty definable subset of S∗. Since M0 ≺M∗0 , we get the same thing in M0, i.e. for
some gi, g1X ∪ . . .∪ gnX = S.

But now we are done: Given X,Y relatively definable subsets of S, consider the 2-sorted
structure (S,G,RX , RY , RX∪Y ) where RX(x, y) ..= x ∈ y.X,RY (x, y) ..= x ∈ y.Y,RX∪Y (x, y) ..= x ∈
y.(X ∪ Y ). The claims (and importantly, their proofs) hold for the predicates in this structure,
and, we also have RX(x, 1)∨RY (x, 1)↔ RX∪Y (x, 1). Then following the argument given at the
start of the proof, we conclude that if X,Y are non-generic then X ∪Y must be non-generic too,
thus completing the proof of (i).

(ii),⇐: Suppose X is generic. Then from the proof of (i), we know that R(x, g) does not divide over
∅ in T0 = Th(M0), where M0 = (S,G,R). By Lemma 2.4, any Boolean combination of conjugates
in T0 is consistent in T0 (I do not understand this), hence

⋂
giX 6= ∅.
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⇒: Suppose X is non-generic, so then R(x, 1) divides over ∅ in T0. Let q∗(y) ∈ SR∗(M∗0 ) be
an extension of tpR∗(1/∅) definable over acl(∅), where M∗0 is a saturated extension of M0 and
R∗(y, x) ..=R(x, y).

Claim. In M0, we can find (bi : i < ω) s.t. bi+1 |= q∗�acl(b0, . . . , bi).

Proof of Claim. Suppose we have found b0, . . . , bi−1 in M0. Let q′(y) = q∗�acl(b0, . . . , bi−1); note
that q′(y) is consistent. Now, we want to use the saturation of our original universe M̄ , so we
need to translate q′(y) into a set of sentences q′′(y) ⊂ LM̄ so that b |= q′(y) in M0 if and only if
b |= q′′(y) in M̄ .1 But this is no problem since, by construction, M0 is ‘type-interpretable’ in M̄ ,
e.g. M0 |= R(x, y) iff M̄ |= x ∈ y.X. By definition, M̄ is big enough for all our needs, so q′′(y)
will be a small collection of formulas over a small set of parameters. By saturation of M̄ , q′′(y) is
realised in M̄ , so q′(y) is realised in M0, and we let bi ∈M0 witness this, proving the claim.

In fact, this claim and proof hold for any ‘small’ (but big enough for our purposes) ordinal κ,
i.e. we can find (bα : α < κ) such that bα |= q∗�acl(bδ : δ < α). Noting that Lemma 2.5 can also be
extended to arbitrary κ, we use it to conclude that their exists k < ω such that {R(x, bα) : α< κ} is
k-inconsistent in T0. Now we return to M̄ . By Erdös–Rado, there is a sequence ci : i < ω which is
indiscernible over B s.t. ∀n, tp(c1...cn/B) = tp(bα1 ...bαn

/B) for some α1 < . . . <αn<κ. (Explicitly,
you first colour the 1-tuples bα of the original sequence by tp(bα/B). Then by Erdös–Rado and
by choosing κ big enough, there exists a monochromatic subset, i.e. we obtain a subsequence of
length κ′ < κ so that the type of 1-tuples is constant. We then colour the 2-tuples by their type,
and so by Erdös–Rado and by choosing κ′ big enough, we obtain a subsequence of length κ′′ < κ′

where the type of 1- and 2-tuples is constant. Repeat for all n < ω).
Since X is relatively definable over B, the fact that

⋂k
i=1 bαiX = ∅ is a part of the type over

B of bα1 ...bαn . Therefore,
⋂k
i=1 ciX = ∅, so in particular, {ciX : i < ω} is inconsistent.

Now that we know the set of global generic types, Y say, is non-empty, we discuss the action
(G, Y ). There are two (equivalent) ways to see how G acts naturally on Y . One way is to let
g ∈ G, p ∈ SS(M̄) and a |= p in some M̄ ′ extending M̄ – then gp ..= tp(ga/M̄). The alternative is
to note that since G acts on S, G acts on the Boolean algebra of subsets of S, so G acts on the
ultrafilters on this Boolean algebra, and these ultrafilters are the global types over S.

Before continuing, we again need to prove a result about local stability:

Lemma 2.7. Let T be any theory, ϕ(x, y) be stable, p(x) ∈ Sϕ(A), B = acleq(A). Let X = {q(x) ∈
Sϕ(B) : p(x)⊆ q(x)}. Then:

(i) The group of elementary permutations of B/A acts transitively on X.

(ii) There is an A-definable equivalence relation E(x1, x2) with finite many classes each defined
by a ϕ-formula s.t. E distinguishes elements of X, i.e. q1(x) = q2(x) iff q1(x1)∪ q2(x2) |=
E(x1, x2).

Proof. (i) Let q(x) ∈ X, p1(x) ∈ S(A) extend p(x) ∈ Sϕ(A). Then we claim that q(x) ∪ p1(x)
is consistent. If the claim failed, then ψ(x) ∪ p1(x) is inconsistent for some ψ(x) ∈ q(x). By
considering A-automorphisms, this means that each of the finitely many A-conjugates of ψ(x) is
inconsistent with p1(x), so their disjunction ψ′(x) is inconsistent with p1(x). However, ψ′(x) is a
ϕ-formula over A and is in q(x), so it must also be in p(x), contradicting p1(x) extending p(x).

So, for all q1, q2 ∈X, there exist a1 |= q1, a2 |= q2 such that tp(a1/A) = p1(x) = tp(a2/A). So we
can find f ∈ Aut(M̄/A) such that f(a1) = a2, so the elementary permutation induced by f takes
q1 to q2.

(ii) Fix q(x) ∈ X. It has a unique extension to q′(x) ∈ Sϕ(M̄) definable over B; let χ(y) be the
definition. By (i) and uniqueness (i.e. any r(x) ∈ Sϕ(M̄) which extends p(x) and is definable over
acl(A) is determined by r�acl(A)), every non-forking global extension of p(x) is definable by some

1 Keep in mind that we are identifying the domain (S,G) of M0 with S and G in M̄ , so using the same element
b for both structures does indeed make sense (as long as b ∈ S or G).
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A-conjugate of χ(y). As χ(y) has only finitely many conjugates, there are only finitely many such
extensions of p(x).

So, let Φ(x) be a finite collection of φ-formulas over B separating the types in X; WMA that
Φ is closed under elementary permutations of B/A. Let E(x1, x2) ..=

∧
{δ(x1)↔ δ(x2) : δ ∈Φ}.

Proposition 2.8. Let (G,S) be a ∞-definable/∅ homogeneous space in a stable theory T . Let
Y = {p ∈ SS(M̄) : p generic}.2 Then:

(i) G(M̄) acts transitively on Y .

(ii) For p(x) ∈ SS(M̄), p(x) ∈ Y iff ∀g ∈G, gp does not divide over ∅.

Proof. (i) From Proposition 2.6, Y 6= ∅. Consider the auxiliary structure defined as follows. For all
ϕ(x, z)∈L, where x has sort S, let Γϕ ⊆P(S) be {S∩ϕ(gx, b)(M̄) : g ∈G, b∈ M̄}. Let ∈ϕ⊆ S×Γϕ
be the relation which holds if x ∈ S is an element of X ∈ Γϕ. Let M1 = (S,Γϕ,∈ϕ)ϕ(x,z)∈L, where
S and Γϕ are sorts.3 Let T1 =Th(M1). Be aware that T1 is not necessarily stable and M1 is not
necessarily saturated.

There is a natural identification between SS(M̄) and Sqf S(M1) (complete quantifier-free types),
namely, p ∈ SS(M̄) is identified with p′ = {x ∈ϕ S ∩ϕ(gx, b)(M̄) : ϕ(gx, b) ∈ p(x)}. (∗)

The following remark collects properties of T1.

Remark 2.9. (i) Each ∈ϕ is stable in T1.

(ii) For all g ∈G the mapping x 7→ gx for x ∈ S and X 7→ gX for X ∈ Γϕ is an automorphism of
M1. (So despite the fact G is not a sort in M1, M1 does still contain information about G).

(iii) All elements of S have the same type over ∅ in M1 (and in T1), i.e. ‘x ∈ S’ determines a
complete type over ∅ in T1.

Proof of Remark. (i) Suppose not, so there exists (si ∈ S,Xi ∈ Γϕ : i < ω) such that si ∈ϕ Xj if
and only if i ≤ j. This means that in M̄ , there exists (si ∈ S, gi ∈ G, bi ∈ M̄ : i < ω) such that
si ∈ ϕ(gjx, bj)(M̄) iff i≤ j, i.e. ϕ(gjsi, bj) iff i≤ j, contradicting stability of T .

(ii) Trivial
(iii) By (ii) and the fact that G acts transitively on S (c.f. proof of same result for M0 in

Proposition 2.6).

Back to proving 2.8(i). Let Y ′ be the set of p′(x) ∈ Sqf S(M1) where p′(x) does not divide over
∅, i.e. p′(x) is definable over acl(∅), i.e. for all ϕ(x, z), p′(x)�∈ϕ is definable over acl(∅) in T1. Now,
to show that G acts transitively on Y , it suffices to show that G acts transitively on Y ′ and that
Y ′ = Y via the identification (∗).

Claim. G acts transitively on Y ′.

Proof of Claim. From 2.9(iii), we know there is a unique 1-type over ∅ in S in T1, p′0(x) say. By
applying Lemma 2.7(ii) to T1,∈ϕ (which is stable by 2.9(i)) and p′0�∈ϕ∈ S∈ϕ(∅), we conclude that
there exists a ∅-definable equivalence relation Eϕ(x1, x2) on S which distinguishes the types in
the set Xϕ = {q(x) ∈ S∈ϕ

(acl(∅)) : p′0�∈ϕ⊆ q(x)}. Since Eϕ is definable in M1, it is G-invariant by
2.9(ii), so Gacts on its equivalence classes. Since M1 is ‘type-interpretable’ in M̄ , 4 Eϕ is relatively
definable in M̄ .By 2.7(i), G acts transitively on Xϕ and since Eϕ distinguishes elements of Xϕ,
this implies that G acts transitively on the Eϕ classes. (Somehow) G also acts transitively on finite
intersections of Eϕ, and so by compactness, and working in the saturated model M̄ in theory T ,
G acts transitively on E =

⋂
ϕ∈LEϕ.

Now, for any p′ ∈ Y ′ and any ϕ, we have that p′�∈ϕ is a type in Xϕ: first, p′�∅ = p′0 by
uniqueness of p′0 (2.7(iii)) so p′�∈ϕ⊇ p′0�∈ϕ, and second, p′�∈ϕ is definable over acl(∅) by definition
of Y ′. Conversely, picking some qϕ ∈ Xϕ for every ϕ will determine a unique p′ ∈ Y ′, since any
formula in p′ is quantifier free and so a Boolean combination of ϕ’s. Recalling that an equivalence

2 Note that ‘∞-definable/∅’ is an abbreviation for ‘∞-definable over ∅’.
3 So note, for clarity’s sake, that elements of M1 are either elements of S, or, subsets of S of the form S ∩

ϕ(gx, b)(M̄) for some ϕ(x, z), g ∈G, b ∈ M̄ .
4 M1 is not necessarily interpretable in M̄ because, for example, S can be ∞-definable but not definable in M̄ .
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class of Eϕ determines a type in Xϕ, we deduce that an equivalence class of E will determine a
type in Xϕ for every ϕ, which we have just shown is equivalent to determining a type in Y ′. Since
G acts transitively on E, we thus conclude that G acts transitively on Y ′.

Claim. Y = Y ′ via the identification (∗).

Proof of Claim. It suffices to show that for any ϕ(gx, b), X ..= S ∩ ϕ(gx, b)(M̄) is generic iff
“x ∈ϕ ϕ(gx, b)” is in some p′ ∈ Y1. For the only-if direction, suppose X is generic so there
exists g1, . . . , gn ∈ G s.t. g1X ∪ . . . ∪ gnX = S. Now fix p′ ∈ Y1. Then for some 1 ≤ i ≤ n,
“x ∈ϕ ϕ(gg−1

i x, b)” is in p′, but then “x ∈ϕ ϕ(gx, b)” is in g−1
i p′.

Conversely, let “x ∈ϕ ϕ(gx, b)′′ ∈ p′ ∈ Y . By 2.7(ii), {p′′�∈ϕ: p′′ ∈ Y ′} is finite and G acts
transitively on this set – let g1, . . . , gn witness this transitivity. Hence, “x ∈ϕ

∨
1≤i≤n ϕ(ggix, b)” is

in every element of Y ′. Letting X ′ ..= S ∩ (
∨

1≤i≤n ϕ(ggix, b))(M̄) and using the only-if direction,
we see that the complement of X ′ is non-generic, so by Proposition 2.6(i), X ′ is generic. But X ′

is a finite union of G-translates of X (note that g−1
i X = S ∩ϕ(ggix, b)(M̄)), so X is generic too.

This ends the claim and so the proof of (i).

(ii) ⇐: If p(x) ∈ Y , then gp ∈ Y for all G, so it suffices to show p(x) does not divide over ∅
in T1. Suppose otherwise, so that there exists ϕ(x, b) ∈ p(x) and (bi : i < κ) indiscernible over
∅ s.t. {ϕ(x, bi) : i < κ} is k-inconsistent for some finite k. By indiscernibility, there exists an
automorphism fi sending b to bi for each i < κ. Then, by k-inconsistency, there are κ many
distinct types amongst fi(p), i.e. p has κ many conjugates over Aut(M̄). Using the correspondence
(∗) from proof of (i), we then get that p′ has κ many conjugates under Aut(M1). By choosing κ
large enough, this contradicts definability of p′ over acl(∅) in M1.
⇒: Suppose p(x) ∈ SS(M̄) is not generic, so there exists formula in ψ(x) ∈ p(x) such that

X = S ∩ψ(M̄) is not generic. By 2.6(ii) (and standard compactness/saturation argument), there
exists an indiscernible (over parameters defining X) (gi : i < κ) ⊂ G s.t. {giX : i < κ} is k-
inconsistent for some finite k. So among {gip : i < κ} there are κ distinct types, so they cannot all
be definable over acl(∅) (by choosing κ large enough), i.e. gp is not definable over acl(∅) for some
g ∈G, so (since T is stable), gp divides over ∅.

Proposition 2.10. Given a stable theory T, let (G,S) a type definable pair over the empty set an
homogeneous space. Let G∅ de the intersection of all relatively definable over ∅ subgroups of G of
finite index. Then for every generic p(x) ∈ SS(M̄) and g ∈G0

∅, g · p= p.

Proof. Fix a formula ϕ(x, z). Let Eϕ be the finite equivalence relation given by 2.7(ii) (for Eϕ,p0�
Σϕ). In Eϕ each class is defined by 2.7(ii). Note that Eϕ is G-invariant.(check).

Let G0
ϕ be the fixator of S/Eϕ, i.e., the subgroup of G that fixes all Eϕ classes. E0

ϕ is a
relatively ∅-definable normal subgroup of G of finite index in M̄ (check). By 2.7, G0

ϕ fixes every
global extension of p0�Eϕ to Sq.f.S(M̄1), where p0 is the unique type over ∅ in T1. So

⋂
ϕ
G0
ϕ fixes

every element of Y1. This implies G0
ϕ fixes every p∈ Y (via some translation). And since Gφ⊆

⋂
ϕ
G0
ϕ

fixes every p ∈ Y .

Corollary 2.11. Given T be a stable theory. Let G be any ∞-definable group definable over
∅. Then every relatively definable (with parameters) subgroup of finite index contains a relatively
definable over ∅ subgroup of finite index.

Proof. We can apply 2.10 to the action of G on itself by left multiplication. Let p(x) ∈ SG(M̄)
and H be a relatively definable subgroup of G of finite. Then there are finitely many left cosets of
H in G. Hence for every x ∈G we have x ∈ a1H ∨ a2H ∨ . . .∨ anH.

So p(x) determines one of these cosets, say aiH, i.e. ∀a |= p(x) a ∈ aiH.(check) If gp= p then
g ∈H. But since p is generic gp= p for all g ∈G0

∅, so G0
∅ ⊆H. By compactness there exists some

finite intersection H0 of relatively definable over ∅ subgroups of finite index so H0 ⊆H.

Let us note that given G a ∞-definable group over ∅ and a small set A of parameters we can
also define G0

A as the intersection of all the relatively definable over A subgroups of finite index.
and the last result says that G0

A doesn’t depend on A, i.e., G0
A = G0

∅. In general if A ⊆ B then
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G0
B ⊆ G0

A ⊆ G0
∅. So in the stable case we just call G0

∅ = G0 the connected component of G which
is the intersection of all relatively definable subgroups of finite index. G0 is normal, in fact every
relatively definable subgroup of finite index contains a relatively definable normal subgroup of finite
index, so G0 =

⋂
i∈I
Hi with Hi normal of finite index relative definable over ∅.

Hence G/G0 = lim
←−

G/Hi is a profinite group.

Consider for example T = Th(Z,+), M0 = (Z,+) and M̄ a saturated model. Then G0 =
⋂
n
nG

and G0(M0) = 0 but G/G0 = Ẑ = lim
←−

Z/nZ.

In general if G is a∞-definable over ∅ group we can define G00
A for any small set A of parameters

as the smallest ∞-definable over A subgroup of G of “bounded” index, i.e. less than 2|T |+A,
this means that in general G00

A < G0
A by the proof of the corollary above, one can also show

that any gobal type determines a coset of G00
A , so the same proof shows that in the stable case

G00
A =G00

∅ =G0.

Definition 2.12. Let (G,S) be ∞-definable over ∅. And T stable theory.Stab(p)/
Stabϕ−1

(i) Let p ∈ SS(M̄). By stabilizer of p, in symbols Stab(p), we mean {g ∈G : gp= p}.

(ii) If p ∈ SS(A) with A stationary, i.e. has no forking extension, stab(p) is by definition Stab(p�
M̄) where p�M̄ is the unique global extension of p definable in A.

(iii) Fix p(x) ∈ SS(M̄) and ϕ(x, z) an L- formula. Let ϕ′(x, y, z), with variable x of sort S and
variable y of sort G, be ϕ(x · y, z). Let δ(y, z) the ϕ-definition of p(x). Define Stabϕ′(p) =
{g ∈G : ∀y, z δ(y · g, z)↔ δ(y, z)} a relatively definable subgroup of G.

Proposition 2.13. Let p(x) ∈ SS(M̄1).

1. Stab(p) =
⋂
ϕ
Stabϕ′(p).

2. p is generic if and only if G0 ⊆ Stab(p).

Proof. Part 1 follows from the definitions.
Consider for part 2 g ∈G0. If p is generic then G0 ⊆ Stab(p) by 2.10. On the other hand, if p

is non generic then we know that for any k there is an indiscernible sequence {gi} i < k in G such
that gip 6= gjp for all i 6= j by 2.6. And gp = hp if and only if h−1gp = p, hence all the gi are in
different cosets with respect to Stab(p). So Stab(p) has unbounded index in G, so it can’t contain
G0

Remark 2.14. Assume G= S. for every p generic we have that Stab(p) =G0. In fact there is a
bijection h between G/G0 and Y , the set of generic types, i.e. each coset of G0 in G contains a
unique generic type, Y ⊆ SG(M̄) is closed and h determines a homeomorphism between G/G0 and
Y .

Note that Y the space of global generic types is closed under G, i.e. gp ∈ Y if p ∈ Y . G acts
transitively on Y since elements of G act by homeomorphism of Y and we can represent G/G0 as
the group of automorphism of (G,Y), i.e. the autohomeomorphisms of Y which commute with the
action of G.

Remark 2.15. Given T a stable theory. (G,S). Let p(x) ∈ SS(A) stationary. Stab(p) = {g ∈G :
(a |= p∧ a |̂

A

g)→ g · a |= p}.
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Chapter 3

Generalizations

We continue now outside stable theories on other environments where the notions we have been
discussing can make sense, probably with some adjustments, for example simple theories, NIP
theories, pseudofinite theories or NTP2 theories.

We will start considering Simple theories. Here we take as references the papers by B. Kim
and A. Pillay [4] and by A. Pillay [6], also the book from F. Wagner [7].

We consider a complete theory T , M̄ a saturated enough “big” model, A,B ⊂M̄ “small” with
respect to M̄. M , N < M̄ models of smaller cardinality.

Definition 3.1. A theory T is simple if every type p(x) ∈ S(B) does not divide over some A⊆B Simple theory
with |A| ≤ |T |.

Equivalently, T does not have the tree property. Where T has the tree property if there is a
formula ϕ(x, y), k < ω and bη for η ∈ ω<ω, such that for all η ∈ ω<ω the set {ϕ(x, bη(i) : i < ω} is
k-inconsistent but if τ ∈ ωω the set {ϕ(x, bτ�n) : n ∈ ω} is consistent.

For a simple theory T the algebraic properties of dividing in stable theories still hold but not
the so called “multiplicity theory”.

Proposition 3.2. Suppose T is simple. Define a |̂
C

b if tp(a/bC) does not divide over C. Then

Existence For all a, and A⊆B there exists a′ such that a≡
A
a′ and a′ |̂

A

B.

Symmetry a |̂
A

b if and only if b |̂
A

a.

Transitivity Given A⊆B ⊆ C. a |̂
A

B and a |̂
B

C if and only if a |̂
A

C

• Suppose a |̂
A

b and (bi : i < ω) is independent over A, and b = b0. Then there exists a′ with

a |̂
A

A∪{bi : i < ω} and a′bi ≡
A
abi for every i.

Forking equals dividing ϕ(x, b) divides over A if and only if ϕ(x, b) forks over A.

Recall that if T is stable, then every type over a model is stationary, i.e. has a unique non
forking global extension. In particular if M ⊆ A, M ⊆ B and p1(x) ∈ S(A) and p2(x) ∈ S(B) are
non forking extensions of p then p1(x)∪ p2(x) extends to a non forking extension of p over A∪B.
This has an extension to simple theories.

Proposition 3.3 (Independence Theorem). Consider T simple. Let p(x) ∈ S(M) and let M ⊆A,
M ⊆B be such that A |̂

M

B. Suppose p1(x) ∈ S(A) and p2(x) ∈ S(B) are non forking extensions of

p then there exists q(x) ∈ S(A∪B) a non forking extension of p such that q�A= p1 and q�B = p2

Basic examples of unstables theories include the random graph, pseudo-finite fields, ACFA
and other suitable stable theories with a random relation. (T a stable theory with quantifier
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elimination plus a mild condition and a new n-place relation R, TR has a model companion, and
each completion is simple).

If we consider the random graph with R(x, y), M̄ a big model. Any non algebraic 1-type over
M̄ does not divide over ∅. And p0 has as many as you want non algebraic extensions over M̄ all
of them non forking.

Consider now a ∅-definable group G. (More generally a∞-definable homogeneous space (G,S)
over ∅)

Definition 3.4. Let p(x) ∈ SG(A), p(x) ` “x ∈ G”. Call p(x) left f-generic if for all g ∈ G andf-generic types
a |= p such that a |̂

A

g then g · a |̂
∅
A, g

Theorem 3.5. Given a simple theory T , and G a ∅-definable group.

1. Let p(x) ∈ SG(A), q(x) ∈ SG(B), A⊆B, p⊆ q. Then p is left f-generic if and only if q is left
f-generic.

2. Left f-generic types exists. (This also holds in ∞-definable (G,S) context)

3. Left f-generic equals right f-generic.

4. If p(x) ∈ S(A) is f-generic if and only if for all g ∈G, a |= p, a |̂
A

g then g · a |̂
A

g.

Methods for part 2 involve an invariant version of D-rank
We call a partial type Φ(x) over A (Φ(x)∧x ∈G) left f-generic if Φ extends to a complete left

f-generic type over A.

Lemma 3.6. Let T be a simple theory, G a group and Φ(x) a partial type over A implying x ∈G.
The following are equivalent.

1. Φ(x) is f-generic.

2. ∀g ∈G gΦ(x) does not fork over ∅. (Where gΦ(x)is Φ(g−1x)).

3. ∀g ∈G gΦ(x) does not fork over A.

This shows that in the stable case f -generic is equivalent to generic, say for a global type by
2.8.

Proof. Assume (1). Let p(x)⊇Φ(x), p(x) ∈ S(A) be f-generic. Let g ∈G and a |= p with a |̂ g so
g · a |̂

∅
(A, g) but g · a satisfies g ·Φ(x)(= Φ(g−1x)), which is a partial type over (A, g). So g ·Φ(x)

does not fork over ∅ as it has an extension to a complete type tp(g · a/A, g) which does not fork
over A. Hence (2) follows.

(3) follows form (2) from the definitions.
Assume now (3) to prove (1). Let g realise some q(x) ∈ SG(A) which is f-generic. By (3) gΦ

does not fork over A. (if gΦ does not fork then it can be extended to a compete type that does
not fork over ∅) So exists d such that d |= Φ and tp(g · d/A, g) does not fork over A. So by 3.5
since g |̂

A

g · d, tp(g/A, g · d) is f-generic, this give us that tp(g/A, (g · d)−1) is f-generic and hence

tp((g ·d)−1g/A, (g ·d)−1) is f-generic. (See Remark 3.2 in [6]). This means that tp(d−1/A, (g ·d)−1)
is generic and because of translation does not fork over ∅ this does not fork over A, so tp(d−1/A)
is f-generic by 3.5. So tp(d/A) is f-generic, since inverting d changes left generics by right generics.
But Φ(d) and Φ is over A so Φ if f-generic.

We proceed now to a brief discussion about stabilizers. Considering henceforth T simple and
G being ∅-definable.

Definition 3.7. Let p(x) ∈ SG(A). S(p) = {g ∈G : gp(x)∪ p(x) does not fork over A}. In other
words, all g ∈G such that ∃c |= p, c |̂

A

g and c= g · b for some b |= p.
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3. Generalizations

Remark In fact using invariant D,ϕ rank arguments as in Remark 4.2 in “Definability and definable
groups” b |̂

A

g so in fact S(p) = {g ∈G : ∃b, c |= p, b |̂ g, c |̂ g, c=G · b}.

Proposition 3.8. (i) S(p) is type definable over A. and if A is a model A =M < M̄ then
S(p).S(p) = Stab(p) is a type definable over A subgroup G.

(ii) p(x) ∈ SG(M) is f-generic if and only if Stab(p) = G00
M has bounded index in G ( i.e. index

is less than 2|T |+|M | < κ).

3.1 Amenability, Measures, NIP

During this section the main references are A. Pillay and E. Hrushovski paper about NIP theories,
[3] and also [2].

Definition 3.9. Keisler measures

(i) Let T be any theory, M̄ a “big” model,M<M̄ small. X anM-definable set in M̄. A Keisler
measure on X over M is a finitely additive probability measure on DefX(M), i.e. definable
over M subsets of X, equivalently definable subsets of X(M), i.e. µ(X) = 1, µ(∅) = 0,
µ(Y )∈ [0, 1] for allM-definable Y ⊆X. If Y1, Y2 are disjoint then µ(Y1∪Y2) = µ(Y1)+µ(Y2).
Note: When M = M̄ we call µ a global Keisler measure on X. Also a special case of the
Keisler measure on X over M is a complete type p(x) ∈ SX(M), its values are in {0, 1}.

(ii) Suppose X is a group G over M and µ is a Keisler measure on G over M . Call µ (left)
G(M)-invariant if for all definable subsets Y ⊆ G(M) (or Y ⊆ G definable over M) and
g ∈G(M) we have µ(gY ) = µ(Y ).

Recall that an abstract group (a discrete group), H, is amenable if there is a finitely additive
left invariant probability measure on P(H).

Definition 3.10. Let T be any theory, M̄ a “big” model,M< M̄ small. G anM-definable group Definably amenable
groupsin M̄. We call G(M) definably amenable if there exists a left G(M)-invariant Keisler measure in

G over M.

Fact. It follows from 5.6 in [3] that G(M) is definable amenable if and only if G(M̄) is definably
amenable, if G(N) definably amenable for all N in which G is defined. Note also that if G(M) is
amenable as a discrete group then it is definably amenable. And if T is stable then every group
G is definably amenable. Consider the canonical surjection between G and the profinite compact
topological group G/G0 where, as usual, G0 is the intersection of all ∅-definable subgroups of finite
index. G/G0 has a unique Haar measure H1, an invariant Borel probability measure. Let X ⊆G
be definable, define µ(X) =H(π(X))⊆G/G0.
Question For T simple is any definable group G definably amenable?

Example 3.11. Let T =RCF , M̄= (K,+, ·), M= (R,+, ·)< M̄.

(a) Let G ⊆ Kn be a M-definable group such that G(M) ⊆ Rn with the Euclidean topology is
compact (Hausdorff). (we call such groups G(M) compact semi algebraic Lie groups). Then
G is definably amenable, in fact there is a unique (global) left G-invariant Keisler measure on
G=G(M̄) and it is the unique lifting of the Haar measure on the compact group G(M) to a
Keisler measure on G. (e.g. SO2(R) or SO3(R))

(b) SL2(R) is not definably amenable.

1 Consider a compact topological group Γ and Σ a σ-algebra containing the borel subsets of Γ, i.e. countable
unions and intersections of open subsets and complements of these. A Haar measure, H, is a measure from Σ to
[0,∞) such that, H(Γ) = 1, and H(γS) = H(S) for each S ∈ Σ, in other words, is invariant under translations.
Moreover, it can be proved that for a compact topological group there exists always a Haar measure.
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3. Generalizations

Definition 3.12.NIP theory
NTP2 theory

• Let T be a complete theory, T has NIP if for any ϕ(x, y) ∈ L and indiscernible sequence
(ai : i < ω) and b ∈ M̄, the truth value of ϕ(ai, b) stabilizes as i→∞, i.e. there exists n such
that |= ϕ(ai, b) for all i > n or |= ¬ϕ(ai, b) for all i > n. (Note: Stable implies NIP)

• T has NTP2 if is not the case that there are a formula ϕ(x, y) and k < ω and (bi,j : i, j < ω)
such that

(i) ∀i{ϕ(x, bi,j) : j < ω} is k-inconsistent, i.e. every set of size k in a fix row(index i) is
inconsistent.

(ii) ∀η ∈ ωω {ϕ(x, bi,η(i)) : i < ω} is consistent. Fact: NTP2 is a common generalization of
simple and NIP.

Proposition 3.13. Consider T a NIP theory. Let p(x) ∈ S(M̄), M < M̄ a small model. The
following are equivalent.

1. p(x) does not divide over M.

2. p(x) does not fork over M.

3. p(x) is Aut(M̄/M)-invariant. ( i.e. given ϕ(x, y) whether or not ϕ(x, y) ∈ p depends on
tp(b/M)).

Proof. To prove the equivalence between parts (1) and (2) we do not use the NIP hypothesis.
First, we mention that diving implies forking. Let us now assume that p(x) forks over M. Since
p(x) forks there is a formula ψ(x) ∈ p(x) that forks, i.e. ψ(x, b) implies ϕ1(x, b1)∨ . . .∨ϕn(x, bn)
and each of the formulas ϕi(x, bi) divides over M. Since p(x) is a complete type at least one of
the formulas ϕi(x, bi) is in p(x) and ϕi(x, bi) divides over M . Hence p(x) divides over M .

Part (3) always implies part (1) since the type p(x) does not divide when for every ϕ(x, b) ∈ p,
and b = b1, b2, . . . indiscernibles over M then {ϕ(x, bi) : i < ω} is consistent. But tp(bi/M) =
tp(b0/M) for every i so by part (3) ϕ(x, b) ∈ p(x) for all i, hence {ϕ(x, bi) : i < ω} is consistent,
and because of this p(x) does not divide.

Assume now part (1) and let ϕ(x, y) ∈ L and b, b′ ∈ M̄ have the same type over M. We want
to show ϕ(x, b) ∈ p if and only if ϕ(x, b′) ∈ p. Now let q(y) ∈ S(M̄) be a coheir of tp(b/M), i.e. it
extends tp(b/M) and forks inM. Let b1, b2, . . . such that b1 |= q�(M,b,b′), and bn+1 |= q�M,b,b′,b1,...,bn

.
Then we can build b, b1, b2, . . . and b′, b1, . . . indiscernibles sequences over M.
Claim ϕ(x, b) ∈ p if and only if ϕ(x, b1) ∈ p.

Proof of claim. Suppose not, without loss of generality ϕ(x, b)∧¬ϕ(x, b1) ∈ p(x) But then (b, b1),
(b2, b3), . . . is also an indiscernible sequence over M, and since p(x) does not divide over M and
ϕ(x, b)∧¬ϕ(x, b1) ∈ p(x) so ϕ(x, b)∧¬ϕ(x, b1)∧ϕ(x, b2)∧¬ϕ(x, b3)∧ϕ(x, b4)∧¬ϕ(x, b5) ∈ p(x) is
consistent. If it is realized by c, using the indiscernibility of (bi), there is no eventual truth value
of the formula ϕ(c, b1), contradicting NIP.

So the claim is proved. for the same reason ϕ(x, b′) ∈ p(x) if and only if ϕ(x, b1) ∈ p. So
ϕ(x, b) ∈ p if and only if ϕ(x, b′) ∈ p.

Remark: There are two extreme cases of an Aut(M̄/M)-invariant type p(x) ∈ S(M̄).

(a) p(x) is finitely satisfiable in M.( Every ϕ(x) ∈ p is realized in M)

(b) p(x) is definable over M .

Definition 3.14. Consider a NIP Theory. Let G be a definable group defined over M. Letf-generic types
NIP context p(x)∈ SG(M̄). Call p(x) left f-generic with respect toM if ∀g ∈G=G(M̄) the translate g ·p does

not divide over M. (Equivalently gp is Aut(M̄/M)-invariant).
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Note that in the stable case it agrees with the notion presented in the last chapter but not in the
simple case.
Fact: Assuming NIP suppose G is defined over M1,M2 then there exists a global f-generic with
respect to M1 if and only if there exists a global f -generic with respect to M2. (See [2] for more
on this)

We now aim towards the next.

Proposition 3.15. Working within a NIP theory. Let G be definable group then G is definably
amenable if and only if G has a global left f-generic type (with respect of some model M).

Sketch of a proof for one implication. (See 5.8, 5.9 in [2]) Suppose there exists global left invariant
Keisler measure. Use the NIP condition (argument of Keisler) to find other such µ which is definable
(over some M0), i.e. for every ϕ(x, y) ∈ L and a closed C ⊆ [0, 1] the set {b : µ(ϕ(x, b)) ∈ C} is
type definable overM0. (So µ is Aut(M̄/M0)-invariant, even more for each definable X ⊆G and
h ∈Aut(M̄/M), µ(X4h(X)) = 0.)

Let p(x) ∈ SG(M̄) be in Supp(µ), i.e. for every ψ(x) ∈ p(x), µ(ψ) > 0. Likewise as µ is
G-invariant, ∀g ∈ G gp is too an element of Supp(µ). So ∀g ∈ G gp is Aut(M̄/M0) invariant.
(Because if ψ(x) ∈ gp and h ∈ Aut(M̄/M0) then µ(ψ(x)4 hψ(x)) = 0) hence hψ(x) ∈ p. So p is
f-generic with respect to M0.)

Question Find a formulation of this last proposition for the NTP2 case.
For example SL2(R) is not definable amenable because it acts on P1(R). If there is a invariant

measure in SL2(R) then there is an invariant measure in P1(R). (See [3] remark 5.2 (iv))

Remark 3.16. Two extreme cases

(a) There is p(x) ∈ SG(M̄), M∈M̄ such that every g · p is finitely satisfiable in M.(fsg group)

In this case there is a unique left invariant Keisler measure on G which is also the unique right
invariant Keisler measure on G.

Example: Definable compact group in o-minimal structures. SO3(R) with R |= RCF . (with
analogues in p-adics, AVCF)

(b) There is p(x) ∈ SG(M) f-generic with respect of M and definable. (Equivalently every gp is
definable over M)

Example: (Z,+, <) < G. There are two classes of definable f-generics at ±∞. Any non
algebraic type of this will be a definable f-generic. (Additional data are the cosets of nG for all
n). This lifts to the multiplicative group of Qp.

Consider now any theory T . Some M̄ model of size κ, saturated, with κ strongly inaccesible,
G definable group over some small A (size less than κ). G00

A is the smallest type definable over A
subgroup of G of index less than κ. (equivalently index less than 2|T |+|A|).

Fact 3.17. 1. G00
A /G and G/G00

A with the logic topology is a compact Hausdorff topological
group. The logic topology is the one where F ⊆ G/G00

A is closed if π−1(y) ⊆ F is type
definable over some small B, where π is the canonical surjection from G to G00

A .

2. G/G00
A has a maximal profinite quotient, precisely G/G0

A. (G00
A <G0

A <G)

Example 3.18. Let T = RCF . G = SO2 = S, M = A = R. G00
A is the infinitesimals and G/G00

A

identifies with SO2(R).

Fact 3.19. Consider T a NIP theory. M countable and p(x) ∈ S(M̄). p does not fork over M.
Then for every ϕ(x, y) ∈ L the set {b : ϕ(x, b) ∈ p} is a countable union of sets type definable over
M. (See 2.6 of [2])

Also if G is a definable group G00
A does not depend on the choice of A.(See [3])

Proposition 3.20. In a NIP theory if G is a definable group over M0 and p(x) ∈ SG(M̄) a left
f-generic with respect to M0. Then Stab(p) ..= {g ∈G : g · p= p}=G00.

Proof. Claim 1 If g1, g2 ∈G(M̄) =G are such that tp(g1/M0) = tp(g2/M0) then g−1
2 g1 ∈ Stab(p).
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Proof of Claim 1. Both p and gp are Aut(M̄/M0)-invariant. Let f ∈ Aut(M̄/M) such that
f(g1) = g2 so g1p= f(g1p) = f(g1)f(p) = g2f(p) = g2p.

Claim 2 Suppose h ∈ Stab(p) then h= g−1
1 g2 for some g1, g2 with the same type over M0.

Proof of Claim 2. Since hp= p then ha= b where a, b |= p∈ ¯̄M. Let Σ(x, y, h) ..= ∃x, y x ≡
M0

y∧h=

xy−1, as M̄ is saturated there exists g1, g2 ∈M with Σ(g1, g2, h) so h= g1g
−1
2 .

So by claim 2 Stabl(p) is type definable over M0 and {xy−1 : x ≡
M0

y, x, y ∈ G}. By claim

1 if tp(g1/M0) = tp(g2/M0) then g1Stabl(p) = g2Stabl(p) so index of Stabl(p) in G is bounded
(Stabl(p) is bounded index type definable over M0).

But for any type p(x), p(x) determines a coset of G00, i.e. a, b |= p. Then ab−1 ∈ G00. If
a |= p then aG00( ¯̄M)∩G(M̄) 6= ∅ so if a, b |= p then ab−1 ∈ G00, therefore Stabl(p) < G00, hence
Stab(p) =G00.

Proposition 3.21. Let T be a NIP theory. If G has a global left f-generic p then G is definably
amenable.

Proof. We try to define our left G-invariant Keisler measure on DefG(M̄) (the definable subsets of
G). We can reduce to the case of T countable and p left generic with respect to f and a countable
model M0. Let X ⊆ G(M̄) be definable. To define µ(X) we may assume X is defined over M0.
By 3.19 Y = {g ∈G :X ∈ gp} by countability this is a countable union of type definable over M0

sets. By 3.20 whether or not g ∈ Y depends only on gG00 <G, i.e. g ∈ Y and h∈ gG00 implies that
h ∈ Y , so we consider π :G−→G/G00, and consider Z = π(Y ). Y is the preimage of Z so π−1(Z)
is a countable union of closed sets in logic topology, so Borel subset of subset of G/G00. G/G00 as
a compact group has a unique left invariant Borel probability measure H (Haar measure).

Define µ(X) to be H(Z) =H(π(Y )).
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